736 resultados para Mining machinery industry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliability of Critical Infrastructure is considered to be a fundamental expectation of modern societies. These large-scale socio-technical systems have always, due to their complex nature, been faced with threats challenging their ongoing functioning. However, increasing uncertainty in addition to the trend of infrastructure fragmentation has made reliable service provision not only a key organisational goal, but a major continuity challenge: especially given the highly interdependent network conditions that exist both regionally and globally. The notion of resilience as an adaptive capacity supporting infrastructure reliability under conditions of uncertainty and change has emerged as a critical capacity for systems of infrastructure and the organisations responsible for their reliable management. This study explores infrastructure reliability through the lens of resilience from an organisation and system perspective using two recognised resilience-enhancing management practices, High Reliability Theory (HRT) and Business Continuity Management (BCM) to better understand how this phenomenon manifests within a partially fragmented (corporatised) critical infrastructure industry – The Queensland Electricity Industry. The methodological approach involved a single case study design (industry) with embedded sub-units of analysis (organisations), utilising in-depth interviews and document analysis to illicit findings. Derived from detailed assessment of BCM and Reliability-Enhancing characteristics, findings suggest that the industry as a whole exhibits resilient functioning, however this was found to manifest at different levels across the industry and in different combinations. Whilst there were distinct differences in respect to resilient capabilities at the organisational level, differences were less marked at a systems (industry) level, with many common understandings carried over from the pre-corporatised operating environment. These Heritage Factors were central to understanding the systems level cohesion noted in the work. The findings of this study are intended to contribute to a body of knowledge encompassing resilience and high reliability in critical infrastructure industries. The research also has value from a practical perspective, as it suggests a range of opportunities to enhance resilient functioning under increasingly interdependent, networked conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the intersection of popular cultural representations of HIV and AIDS and the discourses of public health campaigns. Part Two provides a comprehensive record of all HIV related storylines in Australian television drama from the first AIDS episode of The Flying Doctors in 1986 to the ongoing narrative of Pacific Drive, with its core HIV character, in 1996. Textual representations are examined alongside the agency of "cultural technicians" working within the television industry. The framework for this analysis is established in Part One of the thesis, which examines the discursive contexts for speaking about HIV and AIDS established through national health policy and the regulatory and industry framework for broadcasting in Australia. The thesis examines the dominant liberal democratic framework for representation of HIV I AIDS and adopts a Foucauldian understanding of the processes of governmentality to argue that during the period of the 1980s and 1990s a strand of social democratic discourse combined with practices of self management and the management of the Australian population. The actions of committed agents within both domains of popular culture and health education ensured that more challenging expressions of HIV found their way into public culture.