293 resultados para Microstructure characterization
Resumo:
Autotransporter (AT) proteins are found in all Escherichia coli pathotypes and are often associated with virulence. In this study we took advantage of the large number of available E. coli genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight E. coli genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all E. coli strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual E. coli pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.
Resumo:
In prototypic Escherichia coli K-12 the introduction of disulfide bonds into folding proteins is mediated by the Dsb family of enzymes, primarily through the actions of the highly oxidizing protein EcDsbA. Homologues of the Dsb catalysts are found in most bacteria. Interestingly, pathogens have developed distinct Dsb machineries that play a pivotal role in the biogenesis of virulence factors, hence contributing to their pathogenicity. Salmonella enterica serovar (sv.) Typhimurium encodes an extended number of sulfhydryl oxidases, namely SeDsbA, SeDsbL, and SeSrgA. Here we report a comprehensive analysis of the sv. Typhimurium thiol oxidative system through the structural and functional characterization of the three Salmonella DsbA paralogues. The three proteins share low sequence identity, which results in several unique three-dimensional characteristics, principally in areas involved in substrate binding and disulfide catalysis. Furthermore, the Salmonella DsbA-like proteins also have different redox properties. Whereas functional characterization revealed some degree of redundancy, the properties of SeDsbA, SeDsbL, and SeSrgA and their expression pattern in sv. Typhimurium indicate a diverse role for these enzymes in virulence.
Resumo:
Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.
Resumo:
After attending this presentation, attendees will gain awareness of the ontogeny of cranial maturation, specifically: (1) the fusion timings of primary ossification centers in the basicranium; and (2) the temporal pattern of closure of the anterior fontanelle, to develop new population-specific age standards for medicolegal death investigation of Australian subadults. This presentation will impact the forensic science community by demonstrating the potential of a contemporary forensic subadult Computed Tomography (CT) database of cranial scans and population data, to recalibrate existing standards for age estimation and quantify growth and development of Australian children. This research welcomes a study design applicable to all countries faced with paucity in skeletal repositories. Accurate assessment of age-at-death of skeletal remains represents a key element in forensic anthropology methodology. In Australian casework, age standards derived from American reference samples are applied in light of scarcity in documented Australian skeletal collections. Currently practitioners rely on antiquated standards, such as the Scheuer and Black1 compilation for age estimation, despite implications of secular trends and population variation. Skeletal maturation standards are population specific and should not be extrapolated from one population to another, while secular changes in skeletal dimensions and accelerated maturation underscore the importance of establishing modern standards to estimate age in modern subadults. Despite CT imaging becoming the gold standard for skeletal analysis in Australia, practitioners caution the application of forensic age standards derived from macroscopic inspection to a CT medium, suggesting a need for revised methodologies. Multi-slice CT scans of subadult crania and cervical vertebrae 1 and 2 were acquired from 350 Australian individuals (males: n=193, females: n=157) aged birth to 12 years. The CT database, projected at 920 individuals upon completion (January 2014), comprises thin-slice DICOM data (resolution: 0.5/0.3mm) of patients scanned since 2010 at major Brisbane Childrens Hospitals. DICOM datasets were subject to manual segmentation, followed by the construction of multi-planar and volume rendering cranial models, for subsequent scoring. The union of primary ossification centers of the occipital bone were scored as open, partially closed or completely closed; while the fontanelles, and vertebrae were scored in accordance with two stages. Transition analysis was applied to elucidate age at transition between union states for each center, and robust age parameters established using Bayesian statistics. In comparison to reported literature, closure of the fontanelles and contiguous sutures in Australian infants occur earlier than reported, with the anterior fontanelle transitioning from open to closed at 16.7±1.1 months. The metopic suture is closed prior to 10 weeks post-partum and completely obliterated by 6 months of age, independent of sex. Utilizing reverse engineering capabilities, an alternate method for infant age estimation based on quantification of fontanelle area and non-linear regression with variance component modeling will be presented. Closure models indicate that the greatest rate of change in anterior fontanelle area occurs prior to 5 months of age. This study complements the work of Scheuer and Black1, providing more specific age intervals for union and temporal maturity of each primary ossification center of the occipital bone. For example, dominant fusion of the sutura intra-occipitalis posterior occurs before 9 months of age, followed by persistence of a hyaline cartilage tongue posterior to the foramen magnum until 2.5 years; with obliteration at 2.9±0.1 years. Recalibrated age parameters for the atlas and axis are presented, with the anterior arch of the atlas appearing at 2.9 months in females and 6.3 months in males; while dentoneural, dentocentral and neurocentral junctions of the axis transitioned from non-union to union at 2.1±0.1 years in females and 3.7±0.1 years in males. These results are an exemplar of significant sexual dimorphism in maturation (p<0.05), with girls exhibiting union earlier than boys, justifying the need for segregated sex standards for age estimation. Studies such as this are imperative for providing updated standards for Australian forensic and pediatric practice and provide an insight into skeletal development of this population. During this presentation, the utility of novel regression models for age estimation of infants will be discussed, with emphasis on three-dimensional modeling capabilities of complex structures such as fontanelles, for the development of new age estimation methods.
Resumo:
Bacterial tail-specific proteases (Tsps) have been attributed a wide variety of functions including intracellular virulence, cell wall morphology, proteolytic signal cascades and stress response. This study tested the hypothesis that Tsp has a key function for the transmissive form of Legionella pneumophila. A tsp mutant was generated in Legionella pneumophila 130b and the characteristics of this strain and the isogenic wild-type were examined using a range of growth and proteomic analyses. Recombinant Tsp protein was also produced and analyzed. The L. pneumophila tsp mutant showed no defect in growth on rich media or during thermo-osmotic stress conditions. In addition, no defects in cellular morphology were observed when the cells were examined using transmission electron microscopy. Purified recombinant Tsp was found to be an active protease with a narrow substrate range. Proteome analysis using iTRAQ (5% coverage of the proteome) found that, of those proteins detected, only 5 had different levels in the tsp mutant compared to the wild type. ACP (Acyl Carrier Protein), which has a key role for Legionella differentiation to the infectious form, was reduced in the tsp mutant; however, tsp(-) was able to infect and replicate inside macrophages to the same extent as the wild type. Combined, these data demonstrate that Tsp is a protease but is not essential for Legionella growth or cell infection. Thus, Tsp may have functional redundancy in Legionella.
Resumo:
Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing.
Resumo:
Due to significant increase in vehicular accident and traffic congestions, vehicle to vehicle (V2V) communication based on the intelligent transport system (ITS) was introduced. However, to carry out efficient design and implementation of a reliable vehicular communication systems,a deep knowledge of the propagation channel characteristics in different environments is crucial, in particular the Doppler and pathloss parameters. Therefore, this paper presents an empirical V2V channel characterization and measurement performed under realistic urban, suburban and highway driving conditions in Brisbane, Australia. Based on Lin Cheng statistical Doppler Model (LCDM), values for the RMS Doppler spread and coherence time due to time selective nature of V2V channels were presented. Also, based on Log-distance power law model, values for the mean pathloss exponent and the standard deviation of shadowing were reported for urban, suburban and highway environments. The V2V channel parameters can be useful to system designers for the purpose of evaluating, simulating and developing new protocols and systems.
Resumo:
Bismuth zinc niobium oxide (BZN) was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.
Resumo:
Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol–gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 _C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti–O–Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir–Hinshelwood model. The preferable removal efficiency was observed in composites by 750 _C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10.
Resumo:
PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.
Resumo:
Enhancing quality of food products and reducing volume of waste during mechanical operations of food industry requires a comprehensive knowledge of material response under loadings. While research has focused on mechanical response of food material, the volume of waste after harvesting and during processing stages is still considerably high in both developing and developed countries. This research aims to develop and evaluate a constitutive model of mechanical response of tough skinned vegetables under postharvest and processing operations. The model focuses on both tensile and compressive properties of pumpkin flesh and peel tissues where the behaviours of these tissues vary depending on various factors such as rheological response and cellular structure. Both elastic and plastic response of tissue were considered in the modelling process and finite elasticity combined with pseudo elasticity theory was applied to generate the model. The outcomes were then validated using the published results of experimental work on pumpkin flesh and peel under uniaxial tensile and compression. The constitutive coefficients for peel under tensile test was α = 25.66 and β = −18.48 Mpa and for flesh α = −5.29 and β = 5.27 Mpa. under compression the constitutive coefficients were α = 4.74 and β = −1.71 Mpa for peel and α = 0.76 and β = −1.86 Mpa for flesh samples. Constitutive curves predicted the values of force precisely and close to the experimental values. The curves were fit for whole stress versus strain curve as well as a section of curve up to bio yield point. The modelling outputs had presented good agreement with the empirical values and the constructive curves exhibited a very similar pattern to the experimental curves. The presented constitutive model can be applied next to other agricultural materials under loading in future.
Resumo:
In this work, three novel pyrene cored small conjugated molecules, namely 1,3,6,8-tetrakis(6-(octyloxy)naphthalene-2-yl)pyrene (PY-1), 1,3,6,8-tetrakis((E)-2-(6-(n-octyloxy)naphthalene-2-yl)vinyl)pyrene (PY-2) and 1,3,6,8-tetrakis((6-(n-octyloxy)naphthalene-2-yl)ethynyl)pyrene (PY-3) have been synthesized by Suzuki, heck and Sonogashira organometallic coupling reactions, respectively. The effects of single, double and triple bonds on their optical, electrochemical, and thermal properties are studied in detail. These are all materials fluorescent and they have been used in organic light-emitting diodes (OLEDs) and their electroluminescent properties have been studied.
Resumo:
Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.
Resumo:
This paper presents an overview of the strengths and limitations of existing and emerging geophysical tools for landform studies. The objectives are to discuss recent technical developments and to provide a review of relevant recent literature, with a focus on propagating field methods with terrestrial applications. For various methods in this category, including ground-penetrating radar (GPR), electrical resistivity (ER), seismics, and electromagnetic (EM) induction, the technical backgrounds are introduced, followed by section on novel developments relevant to landform characterization. For several decades, GPR has been popular for characterization of the shallow subsurface and in particular sedimentary systems. Novel developments in GPR include the use of multi-offset systems to improve signal-to-noise ratios and data collection efficiency, amongst others, and the increased use of 3D data. Multi-electrode ER systems have become popular in recent years as they allow for relatively fast and detailed mapping. Novel developments include time-lapse monitoring of dynamic processes as well as the use of capacitively-coupled systems for fast, non-invasive surveys. EM induction methods are especially popular for fast mapping of spatial variation, but can also be used to obtain information on the vertical variation in subsurface electrical conductivity. In recent years several examples of the use of plane wave EM for characterization of landforms have been published. Seismic methods for landform characterization include seismic reflection and refraction techniques and the use of surface waves. A recent development is the use of passive sensing approaches. The use of multiple geophysical methods, which can benefit from the sensitivity to different subsurface parameters, is becoming more common. Strategies for coupled and joint inversion of complementary datasets will, once more widely available, benefit the geophysical study of landforms.Three cases studies are presented on the use of electrical and GPR methods for characterization of landforms in the range of meters to 100. s of meters in dimension. In a study of polygonal patterned ground in the Saginaw Lowlands, Michigan, USA, electrical resistivity tomography was used to characterize differences in subsurface texture and water content associated with polygon-swale topography. Also, a sand-filled thermokarst feature was identified using electrical resistivity data. The second example is on the use of constant spread traversing (CST) for characterization of large-scale glaciotectonic deformation in the Ludington Ridge, Michigan. Multiple CST surveys parallel to an ~. 60. m high cliff, where broad (~. 100. m) synclines and narrow clay-rich anticlines are visible, illustrated that at least one of the narrow structures extended inland. A third case study discusses internal structures of an eolian dune on a coastal spit in New Zealand. Both 35 and 200. MHz GPR data, which clearly identified a paleosol and internal sedimentary structures of the dune, were used to improve understanding of the development of the dune, which may shed light on paleo-wind directions.
Resumo:
We identified, mapped, and characterized a widespread area (gt;1,020 km2) of patterned ground in the Saginaw Lowlands of Michigan, a wet, flat plain composed of waterlain tills, lacustrine deposits, or both. The polygonal patterned ground is interpreted as a possible relict permafrost feature, formed in the Late Wisconsin when this area was proximal to the Laurentide ice sheet. Cold-air drainage off the ice sheet might have pooled in the Saginaw Lowlands, which sloped toward the ice margin, possibly creating widespread but short-lived permafrost on this glacial lake plain. The majority of the polygons occur between the Glacial Lake Warren strandline (~14.8 cal. ka) and the shoreline of Glacial Lake Elkton (~14.3 cal. ka), providing a relative age bracket for the patterned ground. Most of the polygons formed in dense, wet, silt loam soils on flat-lying sites and take the form of reticulate nets with polygon long axes of 150 to 160 m and short axes of 60 to 90 m. Interpolygon swales, often shown as dark curvilinears on aerial photographs, are typically slightly lower than are the polygon centers they bound. Some portions of these interpolygon swales are infilled with gravel-free, sandy loam sediments. The subtle morphology and sedimentological characteristics of the patterned ground in the Saginaw Lowlands suggest that thermokarst erosion, rather than ice-wedge replacement, was the dominant geomorphic process associated with the degradation of the Late-Wisconsin permafrost in the study area and, therefore, was primarily responsible for the soil patterns seen there today.