288 resultados para Macrovascular loop
Resumo:
We have previously reported that human breast carcinoma (HBC) cell lines expressing the mesenchymal intermediate filament protein vimentin (VIM+) are highly invasive in vitro, and highly metastatic in nude mice when compared to their VIM- counterparts. Since only VIM+ cell lines can be induced to activate matrix metalloproteinase-2 (MMP-2) upon stimulation with Concanavalin A (Con A), we have examined here membrane type 1 MMP (MT1-MMP), a cell surface activator of MMP-2. Northern analysis reveals baseline expression of MT1-MMP in five of the six VIM+ cell lines studied (MDA-MB-231, MDA-MB-435, BT-549, Hs578T, MCF-7(ADR)), each of which showed variable activation of exogenous MMP-2 after treatment with Con A. In contrast, the four VIM-, poorly invasive HBC cell lines studied (MCF-7, T47D, MDA-MB 468, ZR-75-1) lacked baseline MT1-MMP mRNA expression, and showed no induction of either MT1-MMP expression or MMP-2-activation with Con A. Such differential MT1-MMP expression was confirmed in vivo using in situ hybridization analysis of nude mouse tumor xenografts of representative cell lines. Western analysis of the MDA-MB-231 cells revealed baseline membrane expression of a 60 kDa species, which was strongly induced by Con A treatment along with a weaker band co-migrating with that from MT1-MMP-transfected COS-1 cells (63 kDa), presumably representing latent MT1-MMP. MT1-MMP immunofluorescence strongly decorated Con A-stimulated MDA-MB-231 cells in a manner consistent with membranous staining, but did not decorate the unstimulated MDA-MB-231 cells or MCF-7 cells under either condition. Collectively, the results suggest the constitutive production of active MT1-MMP which is unavailable for either MMP-2 activation or immuno-decoration until Con A treatment. Since VIM expression arises by virtue of the so-called epithelial to mesenchymal transition (EMT) in invasive embryonic epithelia, we propose that this represents a major metastasis mechanism in breast carcinomas. MT1-MMP on the surface of such 'fibroblastoid' carcinoma cells may mediate a paracrine loop for the utilization of stromally produced MMP-2, and contribute to the poorer survival associated with VIM+ breast carcinomas.
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.
Resumo:
Existing techniques for automated discovery of process models from event logs largely focus on extracting flat process models. In other words, they fail to exploit the notion of subprocess, as well as structured error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of BPMN models containing subprocesses, interrupting and non-interrupting boundary events, and loop and multi-instance markers. The technique analyzes dependencies between data attributes associated with events, in order to identify subprocesses and to extract their associated logs. Parent process and subprocess models are then discovered separately using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. A validation with one synthetic and two real-life logs shows that process models derived using the proposed technique are more accurate and less complex than those derived with flat process model discovery techniques.
Resumo:
Public relations has traditionally claimed a close association with dialogue, but this research demonstrates that formal notions of dialogue have little relevance to the real world of public relations practice. Instead, practitioners undertake pragmatic forms of two-way communication, because the constraints within which they work mean dialogue is difficult if not impossible to carry out. This qualitative research project shows that although the label of 'dialogue' has been co-opted in both the theory and practice of public relations, this claimed connection is not supported by empirical evidence.
Resumo:
Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...
Resumo:
Objective: An increasing body of evidence is emerging linking adipogenesis and inflammation. Obesity, alone or as a part of the metabolic syndrome, is characterized by a state of chronic low-level inflammation as revealed by raised plasma levels of inflammatory cytokines and acute-phase proteins. If inflammation can, in turn, increase adipose tissue growth, this may be the basis for a positive feedback loop in obesity. We have developed a tissue engineering model for growing adipose tissue in the mouse that allows quantification of increases in adipogenesis. In this study, we evaluated the adipogenic potential of the inflammogens monocyte chemoattractant protein (MCP)-I and zymosan-A (Zy) in a murine tissue engineering model. Research Methods and Procedures: MCP-I and Zy were added to chambers filled with Matrigel and fibroblastgrowth factor 2. To analyze the role of inducible nitric oxide synthase (iNOS), the iNOS inhibitor aminoguanidine was added to the chamber. Results: Our results show that MCP-I generated proportionally large quantities of new adipose tissue. This neoadipogenesis was accompanied by an ingrowth of macrophages and could be mimicked by Zy. Aminoguanidine significantly inhibited the formation of adipose tissue. Discussion: Our findings demonstrate that low-grade inflammation and iNOS expression are important factors in adipogenesis, Because fat neoformation in obesity and the metabolic syndrome is believed to be mediated by macrophage-derived proinflammatory cytokines, this adipose tissue engineering system provides a model that could potentially be used to further unravel the pathogenesis of these two metabolic disorders.
Resumo:
In a recently described model for tissue engineering, an arteriovenous loop comprising the femoral artery and vein with interposed vein graft is fabricated in the groin of an adult male rat, placed inside a polycarbonate chamber, and incubated subcutaneously. New vascularized granulation tissue will generate on this loop for up to 12 weeks. In the study described in this paper three different extracellular matrices were investigated for their ability to accelerate the amount of tissue generated compared with a no-matrix control. Poly-D,L-lactic-co-glycolic acid (PLGA) produced the maximal weight of new tissue and vascularization and this peaked at two weeks, but regressed by four weeks. Matrigel was next best. It peaked at four weeks but by eight weeks it also had regressed. Fibrin (20 and 80 mg/ml), by contrast, did not integrate with the generating vascularized tissue and produced less weight and volume of tissue than controls without matrix. The limiting factors to growth appear to be the chamber size and the capacity of the neotissue to integrate with the matrix. Once the sides of the chamber are reached or tissue fails to integrate, encapsulation and regression follow. The intrinsic position of the blood supply within the neotissue has many advantages for tissue and organ engineering, such as ability to seed the construct with stem cells and microsurgically transfer new tissue to another site within the individual. In conclusion, this study has found that PLGA and Matrigel are the best matrices for the rapid growth of new vascularized tissue suitable for replantation or transplantation.
Resumo:
Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand-pairing step in HR. RAD51 associated protein 1 (RAD51AP1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA-damaging treatment. Purified RAD51AP1 binds both dsDNA and a D loop structure and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.
Resumo:
Homologous recombination mediated by RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-strand breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2: to enhance RAD51's ability to form the D loop. We show that PALB2 binds DNA and physically interacts with RAD51. Notably, although PALB2 alone stimulates D-loop formation, it has a cooperative effect with RAD51AP1, an enhancer of RAD51. This stimulation stems from the ability of PALB2 to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results demonstrate the multifaceted role of PALB2 in chromosome damage repair. Because PALB2 mutations can cause cancer or Fanconi anemia, our findings shed light on the mechanism of tumor suppression in humans.
Resumo:
Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.
Resumo:
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.
Resumo:
The objective of this chapter is to provide an overview of traffic data collection that can and should be used for the calibration and validation of traffic simulation models. There are big differences in availability of data from different sources. Some types of data such as loop detector data are widely available and used. Some can be measured with additional effort, for example, travel time data from GPS probe vehicles. Some types such as trajectory data are available only in rare situations such as research projects.
Resumo:
Capacitors are widely used for power-factor correction (PFC) in power systems. When a PFC capacitor is installed with a certain load in a microgrid, it may be in parallel with the filter capacitor of the inverter interfacing the utility grid and the local distributed-generation unit and, thus, change the effective filter capacitance. Another complication is the possibility of occurrence of resonance in the microgrid. This paper conducts an in-depth investigation of the effective shunt-filter-capacitance variation and resonance phenomena in a microgrid due to a connection of a PFC capacitor. To compensate the capacitance-parameter variation, an Hinfin controller is designed for the voltage-source- inverter voltage control. By properly choosing the weighting functions, the synthesized Hinfin controller would exhibit high gains at the vicinity of the line frequency, similar to traditional high- performance P+ resonant controller and, thus, would possess nearly zero steady-state error. However, with the robust Hinfin controller, it will be possible to explicitly specify the degree of robustness in face of parameter variations. Furthermore, a thorough investigation is carried out to study the performance of inner current-loop feedback variables under resonance conditions. It reveals that filter-inductor current feedback is more effective in damping the resonance. This resonance can be further attenuated by employing the dual-inverter microgrid conditioner and controlling the series inverter as a virtual resistor affecting only harmonic components without interference with the fundamental power flow. And finally, the study in this paper has been tested experimentally using an experimental microgrid prototype.
Resumo:
In this paper, the complete mitochondrial genome of Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini) is reported; a circular molecule of 15,245 bp in size. For A. issoria, genes are arranged in the same order and orientation as the complete sequenced mitochondrial genomes of the other lepidopteran species, except for the presence of an extra copy of tRNAIle(AUR)b in the control region. All protein-coding genes of A. issoria mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that COI gene uses TTG as its initial codon and terminates in a single T residue. All tRNA genes possess the typical clover leaf secondary structure except for tRNASer(AGN), which has a simple loop with the absence of the DHU stem. The sequence, organization and other features including nucleotide composition and codon usage of this mitochondrial genome were also reported and compared with those of other sequenced lepidopterans mitochondrial genomes. There are some short microsatellite-like repeat regions (e.g., (TA)9, polyA and polyT) scattered in the control region, however, the conspicuous macro-repeats units commonly found in other insect species are absent.