281 resultados para Image Morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the wing morphology, echolocation calls, diet and emergence time of the black-bearded tomb bat (Taphozous melanopogon) from May to October 2006 in Guangxi Province, southwest China. Taphozous melanopogon has wings with high aspect ratio, high loading and pointed wing-tip shape-characteristics associated with fast flight in open space. This species usually produces low-intensity, low frequency, and frequency-modulated (FM) calls usually containing up to four harmonics, with most energy in the second (or sometimes third) harmonic. The diet of this species consists mostly of Lepidoptera and Hemiptera. Timing of evening emergence is correlated with the time of sunset. This is the first study to describe the flight and echolocation behavior of this species in China, and opens the way for future studies of its biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the wing morphology, echolocation calls, foraging behaviour and flight speed of Tylonycteris pachypus and Tylonycteris robustula in Longzhou County, South China during the summer (June–August) of 2005. The wingspan, wing loading and aspect ratio of the two species were relatively low, and those of T. pachypus were lower compared with T. robustula. The echolocation calls of T. pachypus and T. robustula consist of a broadband frequency modulated (FM) sweep followed by a short narrowband FM sweep. The dominant frequency of calls of T. pachypus was 65.1 kHz, whereas that of T. robustula was 57.7 kHz. The call frequencies (including highest frequency of the call, lowest frequency of the call and frequency of the call that contained most energy) of T. pachypus were higher than those of T. robustula, and the pulse duration of the former was longer than that of the latter. The inter-pulse interval and bandwidth of the calls were not significantly different between the two species. Tylonycteris pachypus foraged in more complex environments than T. robustula, although the two species were both netted in edge habitats (around trees or houses), along pathways and in the tops of trees. Tylonycteris pachypus flew slower (straight level flight speed, 4.3 m s−1) than T. robustula (straight level flight speed, 4.8 m s−1). We discuss the relationship between wing morphology, echolocation calls, foraging behaviour and flight speed, and demonstrate resource partitioning between these two species in terms of morphological and behavioural factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Echolocation calls of 119 bats belonging to 12 species in three families from Antillean islands of Puerto Rico, Dominica, and St. Vincent were recorded by using time-expansion methods. Spectrograms of calls and descriptive statistics of five temporal and frequency variables measured from calls are presented. The echolocation calls of many of these species, particularly those in the family Phyllostomidae, have not been described previously. The wing morphology of each taxon is described and related to the structure of its echolocation calls and its foraging ecology. Of slow aerial-hawking insectivores, the Mormoopidae and Natalidae Mormoops blainvillii, Pteronotus davyi davyi, P. quadridens fuliginosus, and Natalus stramineus stramineus can forage with great manoeuvrability in background-cluttered space (close to vegetation), and are able to hover. Pteronotus parnellii portoricensis is able to fly and echolocate in highly-cluttered space (dense vegetation). Among frugivores, nectarivores and omnivores in the family Phyllostomidae, Brachyphylla cavernarum intermedia is adapted to foraging in the edges of vegetation in background-cluttered space, while Erophylla bombifrons bombifrons, Glossophaga longirostris rostrata, Artibeus jamaicensis jamaicensis, A. jamaicensis schwartzi and Stenoderma rufum darioi are adapted to foraging under canopies in highly-cluttered space and do not have speed or efficiency in commuting flight. In contrast, Monophyllus plethodon luciae, Sturnira lilium angeli and S. lilium paulsoni are adapted to fly in highly-cluttered space, but can also fly fast and efficiently in open areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases. Furthermore, certain applications require this type of registration to operate across images acquired from different imaging modalities. One popular local approach for estimating this registration is a block matching procedure utilising the mutual information criterion. However, previous block matching procedures generate a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. This paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo statistical procedure to optimally select grid points of interest. Three different methods are then compared to propagate the estimated sparse deformation field to the entire image including a thin-plate spline warp, Gaussian convolution, and a hybrid fluid technique. Results show that non-rigid registration can be improved by using the proposed algorithm to optimally select grid points of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The provision of a written comment on traumatic abnormalities of the musculoskeletal system detected by radiographers can assist referrers and may improve patient management, but the practice has not been widely adopted outside the United Kingdom. The purpose of this study was to investigate Australian radiographers’ perceptions of their readiness for practice in a radiographer commenting system and their educational preferences in relation to two different delivery formats of image interpretation education, intensive and non-intensive. Methods A cross-sectional web-based questionnaire was implemented between August and September 2012. Participants included radiographers with experience working in emergency settings at four Australian metropolitan hospitals. Conventional descriptive statistics, frequency histograms, and thematic analysis were undertaken. A Wilcoxon signed-rank test examined whether a difference in preference ratings between intensive and non-intensive education delivery was evident. Results The questionnaire was completed by 73 radiographers (68% response rate). Radiographers reported higher confidence and self-perceived accuracy to detect traumatic abnormalities than to describe traumatic abnormalities of the musculoskeletal system. Radiographers frequently reported high desirability ratings for both the intensive and the non-intensive education delivery, no difference in desirability ratings for these two formats was evident (z = 1.66,P = 0.11). Conclusions Some Australian radiographers perceive they are not ready to practise in a frontline radiographer commenting system. Overall, radiographers indicated mixed preferences for image interpretation education delivered via intensive and non-intensive formats. Further research, preferably randomised trials, investigating the effectiveness of intensive and non-intensive education formats of image interpretation education for radiographers is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines and compares imaging methods used during the radiotherapy treatment of prostate cancer. The studies found that radiation therapists were able to localise and target the prostate consistently with planar imaging techniques and that the use of small gold markers in the prostate reduced the variation in prostate localisation when using volumetric imaging. It was concluded that larger safety margins are required when using volumetric imaging without gold markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. Methods We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI’s least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Results Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Conclusions Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To compare small nerve fiber damage in the central cornea and whorl area in participants with diabetic peripheral neuropathy (DPN) and to examine the accuracy of evaluating these 2 anatomical sites for the diagnosis of DPN. Methods A cohort of 187 participants (107 with type 1 diabetes and 80 controls) was enrolled. The neuropathy disability score (NDS) was used for the identification of DPN. The corneal nerve fiber length at the central cornea (CNFLcenter) and whorl (CNFLwhorl) was quantified using corneal confocal microscopy and a fully automated morphometric technique and compared according to the DPN status. Receiver operating characteristic analyses were used to compare the accuracy of the 2 corneal locations for the diagnosis of DPN. Results CNFLcenter and CNFLwhorl were able to differentiate all 3 groups (diabetic participants with and without DPN and controls) (P < 0.001). There was a weak but significant linear relationship for CNFLcenter and CNFLwhorl versus NDS (P < 0.001); however, the corneal location x NDS interaction was not statistically significant (P = 0.17). The area under the receiver operating characteristic curve was similar for CNFLcenter and CNFLwhorl (0.76 and 0.77, respectively, P = 0.98). The sensitivity and specificity of the cutoff points were 0.9 and 0.5 for CNFLcenter and 0.8 and 0.6 for CNFLwhorl. Conclusions Small nerve fiber pathology is comparable at the central and whorl anatomical sites of the cornea. Quantification of CNFL from the corneal center is as accurate as CNFL quantification of the whorl area for the diagnosis of DPN.