631 resultados para Hybrid methods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a novel hybrid approach is presented that uses a combination of both time domain and frequency domain solution strategies to predict the power distribution within a lossy medium loaded within a waveguide. The problem of determining the electromagnetic fields evolving within the waveguide and the lossy medium is decoupled into two components, one for computing the fields in the waveguide including a coarse representation of the medium (the exterior problem) and one for a detailed resolution of the lossy medium (the interior problem). A previously documented cell-centred Maxwell’s equations numerical solver can be used to resolve the exterior problem accurately in the time domain. Thereafter the discrete Fourier transform can be applied to the computed field data around the interface of the medium to estimate the frequency domain boundary condition in-formation that is needed for closure of the interior problem. Since only the electric fields are required to compute the power distribution generated within the lossy medium, the interior problem can be resolved efficiently using the Helmholtz equation. A consistent cell-centred finite-volume method is then used to discretise this equation on a fine mesh and the underlying large, sparse, complex matrix system is solved for the required electric field using the iterative Krylov subspace based GMRES iterative solver. It will be shown that the hybrid solution methodology works well when a single frequency is considered in the evaluation of the Helmholtz equation in a single mode waveguide. A restriction of the scheme is that the material needs to be sufficiently lossy, so that any penetrating waves in the material are absorbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bioassay technique, based on surface-enhanced Raman scattering (SERS) tagged gold nanoparticles encapsulated with a biotin functionalised polymer, has been demonstrated through the spectroscopic detection of a streptavidin binding event. A methodical series of steps preceded these results: synthesis of nanoparticles which were found to give a reproducible SERS signal; design and synthesis of polymers with RAFT-functional end groups able to encapsulate the gold nanoparticle. The polymer also enabled the attachment of a biotin molecule functionalised so that it could be attached to the hybrid nanoparticle through a modular process. Finally, the demonstrations of a positive bioassay for this model construct using streptavidin/biotin binding. The synthesis of silver and gold nanoparticles was performed by using tri-sodium citrate as the reducing agent. The shape of the silver nanoparticles was quite difficult to control. Gold nanoparticles were able to be prepared in more regular shapes (spherical) and therefore gave a more consistent and reproducible SERS signal. The synthesis of gold nanoparticles with a diameter of 30 nm was the most reproducible and these were also stable over the longest periods of time. From the SERS results the optimal size of gold nanoparticles was found to be approximately 30 nm. Obtaining a consistent SERS signal with nanoparticles smaller than this was particularly difficult. Nanoparticles more than 50 nm in diameter were too large to remain suspended for longer than a day or two and formed a precipitate, rendering the solutions useless for our desired application. Gold nanoparticles dispersed in water were able to be stabilised by the addition of as-synthesised polymers dissolved in a water miscible solvent. Polymer stabilised AuNPs could not be formed from polymers synthesised by conventional free radical polymerization, i.e. polymers that did not possess a sulphur containing end-group. This indicated that the sulphur-containing functionality present within the polymers was essential for the self assembly process to occur. Polymer stabilization of the gold colloid was evidenced by a range of techniques including, visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman spectroscopy. After treatment of the hybrid nanoparticles with a series of SERS tags, focussing on 2-quinolinethiol the SERS signals were found to have comparable signal intensity to the citrate stabilised gold nanoparticles. This finding illustrates that the stabilization process does not interfere with the ability of gold nanoparticles to act as substrates for the SERS effect. Incorporation of a biotin moiety into the hybrid nanoparticles was achieved through a =click‘ reaction between an alkyne-functionalised polymer and an azido-functionalised biotin analogue. This functionalized biotin was prepared through a 4-step synthesis from biotin. Upon exposure of the surface-bound streptavidin to biotin-functionalised polymer hybrid gold nanoparticles, then washing, a SERS signal was obtained from the 2-quinolinethiol which was attached to the gold nanoparticles (positive assay). After exposure to functionalised polymer hybrid gold nanoparticles without biotin present then washing a SERS signal was not obtained as the nanoparticles did not bind to the streptavidin (negative assay). These results illustrate the applicability of the use of SERS active functional-polymer encapsulated gold nanoparticles for bioassay application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of mobile and ubiquitous computing has created what is referred to as a hybrid space – a virtual layer of digital information and interaction opportunities that sits on top and augments the physical environment. The increasing connectedness through such media, from anywhere to anybody at anytime, makes us less dependent on being physically present somewhere in particular. But, what is the role of ubiquitous computing in making physical presence at a particular place more attractive? Acknowledging historic context and identity as important attributes of place, this work embarks on a ‘global sense of place’ in which the cultural diversity, multiple identities, backgrounds, skills and experiences of people traversing a place are regarded as social assets of that place. The aim is to explore ways how physical architecture and infrastructure of a place can be mediated towards making invisible social assets visible, thus augmenting people’s situated social experience. Thereby, the focus is on embodied media, i.e. media that materialise digital information as observable and sometimes interactive parts of the physical environment hence amplify people’s real world experience, rather than substituting or moving it to virtual spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microgrid may be supplied from inertial (rotating type) and non-inertial (converter-interfaced) distributed generators (DGs). However the dynamic response of these two types of DGs is different. Inertial DGs have a slower response due to their governor characteristics while non inertial DGs have the ability to respond very quickly. The focus of this paper is to propose better controls using droop characteristics to improve the dynamic interaction between different DG types in an autonomous microgrid. The transient behavior of DGs in the microgrid is investigated during the DG synchronization and load changes. Power sharing strategies based on frequency and voltage droop are considered for DGs. Droop control strategies are proposed for DGs to improve the smooth synchronization and dynamic power sharing minimizing transient oscillations in the microgrid. Simulation studies are carried out on PSCAD for validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show that techniques used in the analysis of Vapnik's support vector classifiers and of neural networks with small weights can be applied to voting methods to relate the margin distribution to the test error. We also show theoretically and experimentally that boosting is especially effective at increasing the margins of the training examples. Finally, we compare our explanation to those based on the bias-variance decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the application of two advanced optimization methods for solving active flow control (AFC) device shape design problem and compares their optimization efficiency in terms of computational cost and design quality. The first optimization method uses hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimization methods are based on a canonical evolution strategy and incorporate the concepts of parallel computing and asynchronous evaluation. One type of AFC device named shock control bump (SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds which is of special interest to commercial aircraft. Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process. From the practical point of view, applying a SCB on the suction and pressure sides significantly reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary classification methods can be generalized in many ways to handle multiple classes. It turns out that not all generalizations preserve the nice property of Bayes consistency. We provide a necessary and sufficient condition for consistency which applies to a large class of multiclass classification methods. The approach is illustrated by applying it to some multiclass methods proposed in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary classification is a well studied special case of the classification problem. Statistical properties of binary classifiers, such as consistency, have been investigated in a variety of settings. Binary classification methods can be generalized in many ways to handle multiple classes. It turns out that one can lose consistency in generalizing a binary classification method to deal with multiple classes. We study a rich family of multiclass methods and provide a necessary and sufficient condition for their consistency. We illustrate our approach by applying it to some multiclass methods proposed in the literature.