230 resultados para Grantham Railway
Resumo:
The paper presents an innovative approach to modelling the causal relationships of human errors in rail crack incidents (RCI) from a managerial perspective. A Bayesian belief network is developed to model RCI by considering the human errors of designers, manufactures, operators and maintainers (DMOM) and the causal relationships involved. A set of dependent variables whose combinations express the relevant functions performed by each DMOM participant is used to model the causal relationships. A total of 14 RCI on Hong Kong’s mass transit railway (MTR) from 2008 to 2011 are used to illustrate the application of the model. Bayesian inference is used to conduct an importance analysis to assess the impact of the participants’ errors. Sensitivity analysis is then employed to gauge the effect the increased probability of occurrence of human errors on RCI. Finally, strategies for human error identification and mitigation of RCI are proposed. The identification of ability of maintainer in the case study as the most important factor influencing the probability of RCI implies the priority need to strengthen the maintenance management of the MTR system and that improving the inspection ability of the maintainer is likely to be an effective strategy for RCI risk mitigation.
Resumo:
In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. In this paper, a novel job shop approach is proposed to create a more efficient integrated harvesting and sugarcane transport scheduling system to reduce the cost of sugarcane transport. There are several benefits that can be attained by treating the train scheduling problem as a job shop problem. Job shop is generic and suitable for all trains scheduling problems. Job shop technique prevents operating two trains on one section at the same time because it considers that the section or the machine is unique. This technique is more promising to find better solutions in reasonable computation times.
Resumo:
The third edition of the Australian Standard AS1742 Manual of Uniform Traffic Control Devices Part 7 provides a method of calculating the sighting distance required to safely proceed at passive level crossings based on the physics of moving vehicles. This required distance becomes greater with higher line speeds and slower, heavier vehicles so that it may return quite a long sighting distance. However, at such distances, there are also concerns around whether drivers would be able to reliably identify a train in order to make an informed decision regarding whether it would be safe to proceed across the level crossing. In order to determine whether drivers are able to make reliable judgements to proceed in these circumstances, this study assessed the distance at which a train first becomes identifiable to a driver as well as their, ability to detect the movement of the train. A site was selected in Victoria, and 36 participants with good visual acuity observed 4 trains in the 100-140 km/h range. While most participants could detect the train from a very long distance (2.2 km on average), they could only detect that the train was moving at much shorter distances (1.3 km on average). Large variability was observed between participants, with 4 participants consistently detecting trains later than other participants. Participants tended to improve in their capacity to detect the presence of the train with practice, but a similar trend was not observed for detection of the movement of the train. Participants were consistently poor at accurately judging the approach speed of trains, with large underestimations at all investigated distances.
Resumo:
There are 23,500 level crossings in Australia. In these types of environments it is important to understand what human factor issues are present and how road users and pedestrians engage with crossings. A series of on-site observations were performed over a 2-day period at a 3-track active crossing. This was followed by 52 interviews with local business owners and members of the public. Data were captured using a manual-coding scheme for recording and categorising violations. Over 700 separate road user and pedestrian violations were recorded, with representations in multiple categories. Time stamping revealed that the crossing was active for 59% of the time in some morning periods. Further, trains could take up to 4-min to arrive following its first activation. Many pedestrians jaywalked under side rails and around active boom gates. In numerous cases pedestrians put themselves at risk in order to beat or catch the approaching train, ignored signs to stop walking when the lights were flashing. Analysis of interview data identified themes associated with congestion, safety, and violations. This work offers insight into context specific issues associated with active level crossing protection.
Resumo:
Because of the bottlenecking operations in a complex coal rail system, millions of dollars are costed by mining companies. To handle this issue, this paper investigates a real-world coal rail system and aims to optimise the coal railing operations under constraints of limited resources (e.g., limited number of locomotives and wagons). In the literature, most studies considered the train scheduling problem on a single-track railway network to be strongly NP-hard and thus developed metaheuristics as the main solution methods. In this paper, a new mathematical programming model is formulated and coded by optimization programming language based on a constraint programming (CP) approach. A new depth-first-search technique is developed and embedded inside the CP model to obtain the optimised coal railing timetable efficiently. Computational experiments demonstrate that high-quality solutions are obtainable in industry-scale applications. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and specific criteria. Keywords Train scheduling · Rail transportation · Coal mining · Constraint programming