333 resultados para Criminal Complex Ribeirão das Neves
Resumo:
Restriction fragment length polymorphisms have been used to determine the chromosomal location of the genes encoding the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) of pea leaf mitochondria. The genes encoding the H subunit of GDC and the genes encoding SHMT both show linkage to the classical group I marker i. In addition, the genes for the P protein of GDC show linkage to the classic group I marker a. The genes for the L and T proteins of GDC are linked to one another and are probably situated on the satellite of chromosome 7. The mRNAs encoding the five polypeptides that make up GDC and SHMT are strongly induced when dark-grown etiolated pea seedlings are placed in the light. Similarly, when mature plants are placed in the dark for 48 h, the levels of both GDC protein and SHMT mRNAs decline dramatically and then are induced strongly when these plants are returned to the light. During both treatments a similar pattern of mRNA induction is observed, with the mRNA encoding the P protein of GDC being the most rapidly induced and the mRNA for the H protein the slowest. Whereas during the greening of etiolated seedlings the polypeptides of GDC and SHMT show patterns of accumulation similar to those of the corresponding mRNAs, very little change in the level of the polypeptides is seen when mature plants are placed in the dark and then re-exposed to the light.
Resumo:
Matrix Metalloproteinase-2 (MMP-2) is secreted as a zymogen, the activation of which has been associated with metastatic progression in human breast cancer (HBC). Concanavalin A (Con A) has been found to induce activation of MMP-2 in invasive HBC cell lines. Con A effects on the expression of mRNA for membrane-type matrix metalloproteinase (MT-MMP), a newly described cell surface-associated MMP, showed a close temporal correlation with induction of MMP-2 activation. It is surprising that MT-MMP mRNA is constitutively present in the uninduced MDA-MB-231 cell, despite a lack of MMP-2 activation. We have used actinomycin D to demonstrate a partial requirement for de novo gene expression in the induction of MMP-2 activation by Con A in MDA-MB-231 HBC cells. Furthermore, this transcriptional response to Con A appeared to require the continued presence of Con A for its manifestation. The nontranscriptional component of the Con A induction manifests rapidly, is quite substantial, and persists strongly despite actinomycin D abrogation of both constitutive and Con A-induced MT-MMP. Cycloheximide analyses suggest that protein synthesis may be involved in this rapid transcription-independent response. These studies suggest that Con A induces MMP-2-activation in part by up-regulation of MT-MMP expression but has a more complicated mode of action, involving additional nontranscriptional effects, which apparently require protein synthesis.
Resumo:
The validity of fatigue protocols involving multi-joint movements, such as stepping, has yet to be clearly defined. Although surface electromyography can monitor the fatigue state of individual muscles, the effects of joint angle and velocity variation on signal parameters are well established. Therefore, the aims of this study were to i) describe sagittal hip and knee kinematics during repetitive stepping ii) identify periods of high inter-trial variability and iii) determine within-test reliability of hip and knee kinematic profiles. A group of healthy men (N = 15) ascended and descended from a knee-high platform wearing a weighted vest (10%BW) for 50 consecutive trials. The hip and knee underwent rapid flexion and extension during step ascent and descent. Variability of hip and knee velocity peaked between 20-40% of the ascent phase and 80-100% of the descent. Significant (p<0.05) reductions in joint range of motion and peak velocity during step ascent were observed, while peak flexion velocity increased during descent. Healthy individuals use complex hip and knee motion to negotiate a knee-high step with kinematic patterns varying across multiple repetitions. These findings have important implications for future studies intending to use repetitive stepping as a fatigue model for the knee extensors and flexors.
Resumo:
Realizing the promise of molecularly targeted inhibitors for cancer therapy will require a new level of knowledge about how a drug target is wired into the control circuitry of a complex cellular network. Here we review general homeostatic principles of cellular networks that enable the cell to be resilient in the face of molecular perturbations, while at the same time being sensitive to subtle input signals. Insights into such mechanisms may facilitate the development of combination therapies that take advantage of the cellular control circuitry, with the aim of achieving higher efficacy at a lower drug dosage and with a reduced probability of drug-resistance development.
Resumo:
The response of complex ionized gas systems to the presence of nonuniform distribution of charged grains is investigated using a kinetic model. Contrary to an existing view that the electron temperature inevitably increases in the grain-occupied region because of enhanced ionization to compensate for the electrons lost to the grains, it is shown that this happens only when the ionizing electric field increases in the electron depleted region. The results for two typical plasma systems suggest that when the ionizing electric field depends on the spatially averaged electron density, the electron temperature in the grain containing region can actually decrease.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.
Resumo:
A model for electronegative plasmas containing charged dust or colloidal grains was used. Numerical solutions based on the model demonstrate how a low-pressure diffusion equilibrium of the complex electronegative plasma system is dynamically sustained through plasma particle sources.
Resumo:
A wave propagation in a complex dusty plasma with negative ions was considered. The relevant processes such as ionization, electron attachment, diffusion, positive-negative ion recombination, plasma particle collisions, as well as elastic Coulomb and inelastic dust-charging collisions were taken self-consistently. It was found that the equilibrium of the plasma as well as the propagation of ion waves were modified to various degrees by these effects.
Resumo:
The claim that restorative justice emerged in response to the failings of the traditional criminal justice system is frequently made and rarely challenged in the restorative justice literature. It is stated unproblematically, as though it is an unassailable fact rather than a powerful truth claim, thereby positioning restorative justice as a natural, progressive and superior model of justice in comparison with the traditional criminal justice system. This truth claim therefore bestows restorative justice with a legitimacy that is difficult to challenge or refute. Drawing on a Foucaultian genealogy of restorative justice, this article seeks to destabilise the truth claim that restorative justice emerged in response to the failings of the criminal justice system. While the shortcomings of the traditional criminal justice system may provide a backdrop to the emergence of restorative justice, this article argues that such a possibility makes restorative justice a possibility rather than an inevitability.
Resumo:
A generic approach towards tailoring of ion species composition in reactive plasmas used for nanofabrication of various functional nanofilms and nanoassemblies, based on a simplified model of a parallel-plate rf discharge, is proposed. The model includes an idealized reactive plasma containing two neutral and two ionic species interacting via charge exchange collisions in the presence of a microdispersed solid component. It is shown that the number densities of the desired ionic species can be efficiently managed by adjusting the dilution of the working gas in a buffer gas, rates of electron impact ionization, losses of plasma species on the discharge walls, and surfaces of fine particles, charge exchange rates, and efficiency of three-body recombination processes in the plasma bulk. The results are relevant to the plasma-aided nanomanufacturing of ordered patterns of carbon nanotip and nanopyramid microemitters.
Resumo:
The effect of density and size of dust grains on the electron energy distribution function (EEDF) in low-temperature complex plasmas is studied. It is found that the EEDF depends strongly on the dust density and size. The behavior of the electron temperature can differ significantly from that of a pristine plasma. For low-pressure argon glow discharge, the Druyvesteyn-like EEDF often found in pristine plasmas can become nearly Maxwellian if the dust density and/or sizes are large. One can thus control the plasma parameters by the dust grains.
Resumo:
The control of the generation and assembly of the electronegative plasma-grown particles is discussed. Due to the large number of elementary processes of particle creation and loss, electronegative complex plasmas should be treated as open systems where the stationary states are sustained by various particle creation and loss processes in the plasma bulk, on the walls, and on the dust grain surfaces. To be physically self-consistent, ionization, diffusion, electron attachment, recombination, dust charge variation, and dissipation due to electron and ion elastic collisions with neutrals and fine particles, as well as charging collisions with the dust, must be accounted for.
Resumo:
Negative ions and negatively charged micro- to nano-meter sized dust grains are ubiquitous in astrophysical as well as industrial processing plasmas. The negative ions can appear in electro-negative plasmas as a result of elementary processes such as dissociative or non-dissociative electron attachment to neutrals. They are usually rather small in number, and in general do not affect the overall plasma behavior. On the other hand, since the dust grains are almost always highly negative, even in small numbers they can take up a considerable proportion of the total negative charge in the system. The presence of dusts can affect the characteristics of most collective processes of the plasma since the charge balance in both the steady and dynamic states can be significantly altered. Another situation that often occurs is that the electron number density becomes small because of their absorption by the dust grains or the discharge walls. In this case the negative ions in the plasma can play a very important role. Here, a self-consistent theory of linear waves in complex laboratory plasmas containing dust grains and negative ions is presented. A comprehensive model for such plasmas including source and sink effects associated with the presence of dust grains and negative ions is introduced. The stationary state of the plasma as well as the dispersion and damping characteristics of the waves are investigated. All relevant processes, such as ionization, diffusion, electron attachment, negative-positive ion recombination, dust charge relaxation, and dissipation due to electron and ion elastic collisions with neutrals and dust particles, as well as charging collisions with the dusts, are taken into consideration.
Resumo:
An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.
Resumo:
The 3′ UTRs of eukaryotic genes participate in a variety of post-transcriptional (and some transcriptional) regulatory interactions. Some of these interactions are well characterised, but an undetermined number remain to be discovered. While some regulatory sequences in 3′ UTRs may be conserved over long evolutionary time scales, others may have only ephemeral functional significance as regulatory profiles respond to changing selective pressures. Here we propose a sensitive segmentation methodology for investigating patterns of composition and conservation in 3′ UTRs based on comparison of closely related species. We describe encodings of pairwise and three-way alignments integrating information about conservation, GC content and transition/transversion ratios and apply the method to three closely related Drosophila species: D. melanogaster, D. simulans and D. yakuba. Incorporating multiple data types greatly increased the number of segment classes identified compared to similar methods based on conservation or GC content alone. We propose that the number of segments and number of types of segment identified by the method can be used as proxies for functional complexity. Our main finding is that the number of segments and segment classes identified in 3′ UTRs is greater than in the same length of protein-coding sequence, suggesting greater functional complexity in 3′ UTRs. There is thus a need for sustained and extensive efforts by bioinformaticians to delineate functional elements in this important genomic fraction. C code, data and results are available upon request.