326 resultados para Controller medications
Resumo:
Dynamic positioning of marine craft refers to the use of the propulsion system to regulate the vessel position and heading. This type of motion control is commonly used in the offshore industry for surface vessels, and it is also used for some underwater vehicles. In this paper, we use a port-Hamiltonian framework to design a novel nonlinear set-point-regulation controller with integral action. The controller handles input saturation and guarantees internal stability, rejection of unknown constant disturbances, and (integral-)input-to-state stability.
Resumo:
In moderate to high sea states, the effectiveness of ship fin stabilizers can severely deteriorate due to nonlinear effects arising from unsteady hydrodynamic characteristics of the fins: dynamic stall. These nonlinear effects take the form of a hysteresis, and they become very significant when the effective angle of attack of the fins exceeds a certain threshold angle. Dynamic stall can result in a complete loss of control action depending on how much the fins exceed the threshold angle. When this is detected, it is common to reduce the gain of the controller that commands the fins. This approach is cautious and tends to reduce performance when the conditions leading to dynamic stall disappear. An alternative approach for preventing the effects while keeping high performance, consists of estimating the effective angle of attack and set a conservative constraint on it as part of the control objectives. In this paper, we investigate the latter approach, and propose the use of a model predictive control (MPC) to prevent the development of these nonlinear effects by considering constraints on both the mechanical angle of the fins and the effective angle of attack.
Resumo:
In this paper, we consider a passivity-based approach for the design of a control law of multiple ship-roll gyro-stabiliser units. We extend previous work on control of ship roll gyro-stabilisation by considering the problem within a nonlinear framework. In particular, we derive an energy-based model using the port-Hamiltonian theory and then design an active precession controller using passivity-based control interconnection and damping assignment. The design considers the possibility of having multiple gyro-stabiliser units, and the desired potential energy of the system (in closed loop) is chosen to behave like a barrier function, which allows us to enforce constraints on the precession angle of the gyros.
Resumo:
In this paper, we consider the problem of position regulation of a class of underactuated rigid-body vehicles that operate within a gravitational field and have fully-actuated attitude. The control objective is to regulate the vehicle position to a manifold of dimension equal to the underactuation degree. We address the problem using Port-Hamiltonian theory, and reduce the associated matching PDEs to a set of algebraic equations using a kinematic identity. The resulting method for control design is constructive. The point within the manifold to which the position is regulated is determined by the action of the potential field and the geometry of the manifold. We illustrate the performance of the controller for an unmanned aerial vehicle with underactuation degree two-a quadrotor helicopter.
Resumo:
This paper proposes a method for design of a set-point regulation controller with integral action for an underactuated robotic system. The robot is described as a port-Hamiltonian system, and the control design is based on a coordinate transformation and a dynamic extension. Both the change of coordinates and the dynamic extension add extra degrees of freedom that facilitate the solution of the matching equation associated with interconnection and damping assignment passivity-based control designs (IDA-PBC). The stability of the controlled system is proved using the closed loop Hamiltonian as a Lyapunov candidate function. The performance of the proposed controller is shown in simulation.
Resumo:
This paper considers the design of active control for car suspension systems using a particular form of energy-based control called Interconnection-and-Damping-Assignment Passivity-Based Control (IDA-PBC). This approach allows one to shape the kinetic and potential energy as well as modify the power flow among different components of the system by changing the interconnection and dissipative structure in a meaningful way. Different controller parameterisations are considered to design a class of controllers for active suspension systems.
Resumo:
This paper considers the manoeuvring of underactuated surface vessels. The control objective is to steer the vessel to reach a manifold which encloses a waypoint. A transformation of configuration variables and a potential field are used in a Port-Hamiltonian framework to design an energy-based controller. With the proposed controller, the geometric task associated with the manoeuvring problem depends on the desired potential energy (closed-loop) and the dynamic task depends on the total energy and damping. Therefore, guidance and motion control are addressed jointly, leading to model-energy-based trajectory generation.
Resumo:
This paper presents a novel control strategy for velocity tracking of Permanent Magnet Synchronous Machines (PMSM). The model of the machine is considered within the port-Hamiltonian framework and a control is designed using concepts of immersion and invariance (I&I) recently developed in the literature. The proposed controller ensures internal stability and output regulation, and it forces integral action on non-passive outputs.
Resumo:
This paper presents a novel control strategy for trajectory tracking of marine vehicles manoeuvring at low speed. The model of the marine vehicle is formulated as a Port-Hamiltonian system, and the tracking controller is designed using energy shaping and damping assignment. The controller guarantees global asymptotic stability and includes integral action for output variables with relative degree greater than one.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
BACKGROUND Asthma severity and control can be measured both subjectively and objectively. Sputum analysis for evaluation of percentage of sputum eosinophilia directly measures airway inflammation, and is one method of objectively monitoring asthma. Interventions for asthma therapies have been traditionally based on symptoms and spirometry. OBJECTIVES To evaluate the efficacy of tailoring asthma interventions based on sputum analysis in comparison to clinical symptoms (with or without spirometry/peak flow) for asthma related outcomes in children and adults. SEARCH STRATEGY We searched the Cochrane Airways Group Specialised Register of Trials, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and reference lists of articles. The last search was on 31 October 2006. SELECTION CRITERIA All randomised controlled comparisons of adjustment of asthma therapy based on sputum eosinophils compared to traditional methods (primarily clinical symptoms and spirometry/peak flow). DATA COLLECTION AND ANALYSIS Results of searches were reviewed against pre-determined criteria for inclusion. Three sets of reviewers selected relevant studies.Two review authors independently assessed trial quality extracted data. Authors were contacted for further information but none were received. Data was analysed as "treatment received" and sensitivity analyses performed. MAIN RESULTS Three adult studies were included; these studies were clinically and methodologically heterogenous (use of medications, cut off for percentage of sputum eosinophils and definition of asthma exacerbation). There were no eligible paediatric studies. Of 246 participants randomised, 221 completed the trials. In the meta-analysis, a significant reduction in number of participants who had one or more asthma exacerbations occurred when treatment was based on sputum eosinophils in comparison to clinical symptoms; pooled odds ratio (OR) was 0.49 (95% CI 0.28 to 0.87); number needed to treat to benefit (NNTB) was 6 (95% CI 4 to 32).There were also differences between groups in the rate of exacerbation (any exacerbation per year) and severity of exacerbations defined by requirement for use of oral corticosteroids but the reduction in hospitalisations was not statistically significant. Data for clinical symptoms, quality of life and spirometry were not significantly different between groups. The mean dose of inhaled corticosteroids per day was similar in both groups and no adverse events were reported. However sputum induction was not always possible. AUTHORS' CONCLUSIONS Tailored asthma interventions based on sputum eosinophils is beneficial in reducing the frequency of asthma exacerbations in adults with asthma. This review supports the use of sputum eosinophils to tailor asthma therapy for adults with frequent exacerbations and severe asthma. Further studies need to be undertaken to strengthen these results and no conclusion can be drawn for children with asthma.
Resumo:
While several randomised control trials (RCTs) have evaluated the use of fractional exhaled nitric oxide (FeNO) to improve asthma outcomes, none used FeNO cut-offs adjusted for atopy, a determinant of FeNO levels. In a dual centre RCT, we assessed whether a treatment strategy based on FeNO levels, adjusted for atopy, reduces asthma exacerbations compared with the symptoms-based management (controls). Children with asthma from hospital clinics of two hospitals were randomly allocated to receive an a-priori determined treatment hierarchy based on symptoms or FeNO levels. There was a 2-week run-in period and they were then reviewed ten times over 12-months. The primary outcome was the number of children with exacerbations over 12-months. Sixty-three children were randomised (FeNO=31, controls=32); 55 (86%) completed the study. Although we did achieve our planned sample size, significantly fewer children in the FeNO group (6 of 27) had an asthma exacerbation compared to controls (15 of 28), p=0.021; number to treat for benefit=4 (95%CI 3-24). There was no difference between groups for any secondary outcomes (quality of life, symptoms, FEV1). The final daily inhaled corticosteroids (ICS) dose was significantly (p=0.037) higher in the FeNO group (median 400µg, IQR 250-600) compared to the controls (200, IQR100-400). Taking atopy into account when using FeNO to tailor asthma medications is likely beneficial in reducing the number of children with severe exacerbations at the expense of increased ICS use. However, the strategy is unlikely beneficial for improving asthma control. A larger study is required to confirm or refute our findings.
Resumo:
Port-Hamiltonian Systems (PHS) have a particular form that incorporates explicitly a function of the total energy in the system (energy function) and also other functions that describe structure of the system in terms of energy distribution. For PHS, the product of the input and output variables gives the rate of energy change. This type of systems have the property that under certain conditions on the energy function, the system is passive; and thus, stable. Therefore, if one can design a controller such that the closed-loop system retains - or takes - a PHS form, such closed-loop system will inherit the properties of passivity and stability. In this paper, the classical model of marine craft is put into a PHS form. It is shown that models used for positioning control do not have a PHS form due to a kinematic transformation, but a control design can be done such that the closed-loop system takes a PHS form. It is further shown how integral action can be added and how the PHS-form can be exploited to provide a procedure for control design that ensures passivity and thus stability.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
This paper presents a framework for the design of a joint motion controller and a control allocation strategy for dynamic positioning of marine vehicles. The key aspects of the proposed designs are a systematic approach to deal with actuator saturation and to inform the motion controller about saturation. The proposed system uses a mapping that translates the actuator constraint sets into constraint sets at the motion controller level. Hence, while the motion controller addresses the constraints, the control allocation algorithm can solve an unconstrained optimisation problem. The constrained control design is approached using a multivariable anti-wind-up strategy for strictly proper controllers. This is applicable to the implementation of PI and PID type of motion controllers.