382 resultados para Computer Modelling
Resumo:
Selecting an appropriate business process modelling technique forms an important task within the methodological challenges of a business process management project. While a plethora of available techniques has been developed over the last decades, there is an obvious shortage of well-accepted reference frameworks that can be used to evaluate and compare the capabilities of the different techniques. Academic progress has been made at least in the area of representational analyses that use ontology as a benchmark for such evaluations. This paper reflects on the comprehensive experiences with the application of a model based on the Bunge ontology in this context. A brief overview of the underlying research model characterizes the different steps in such a research project. A comparative summary of previous representational analyses of process modelling techniques over time gives insights into the relative maturity of selected process modelling techniques. Based on these experiences suggestions are made as to where ontology-based representational analyses could be further developed and what limitations are inherent to such analyses.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.
Resumo:
Sleeper is an 18'00" musical work for live performer and laptop computer which exists as both a live performance work and a recorded work for audio CD. The work has been presented at a range of international performance events and survey exhibitions. These include the 2003 International Computer Music Conference (Singapore) where it was selected for CD publication, Variable Resistance (San Francisco Museum of Modern Art, USA), and i.audio, a survey of experimental sound at the Performance Space, Sydney. The source sound materials are drawn from field recordings made in acoustically resonant spaces in the Australian urban environment, amplified and acoustic instruments, radio signals, and sound synthesis procedures. The processing techniques blur the boundaries between, and exploit, the perceptual ambiguities of de-contextualised and processed sound. The work thus challenges the arbitrary distinctions between sound, noise and music and attempts to reveal the inherent musicality in so-called non-musical materials via digitally re-processed location audio. Thematically the work investigates Paul Virilio’s theory that technology ‘collapses space’ via the relationship of technology to speed. Technically this is explored through the design of a music composition process that draws upon spatially and temporally dispersed sound materials treated using digital audio processing technologies. One of the contributions to knowledge in this work is a demonstration of how disparate materials may be employed within a compositional process to produce music through the establishment of musically meaningful morphological, spectral and pitch relationships. This is achieved through the design of novel digital audio processing networks and a software performance interface. The work explores, tests and extends the music perception theories of ‘reduced listening’ (Schaeffer, 1967) and ‘surrogacy’ (Smalley, 1997), by demonstrating how, through specific audio processing techniques, sounds may shifted away from ‘causal’ listening contexts towards abstract aesthetic listening contexts. In doing so, it demonstrates how various time and frequency domain processing techniques may be used to achieve this shift.
Resumo:
Executive Summary The objective of this report was to use the Sydney Opera House as a case study of the application of Building Information Modelling (BIM). The Sydney opera House is a complex, large building with very irregular building configuration, that makes it a challenging test. A number of key concerns are evident at SOH: • the building structure is complex, and building service systems - already the major cost of ongoing maintenance - are undergoing technology change, with new computer based services becoming increasingly important. • the current “documentation” of the facility is comprised of several independent systems, some overlapping and is inadequate to service current and future services required • the building has reached a milestone age in terms of the condition and maintainability of key public areas and service systems, functionality of spaces and longer term strategic management. • many business functions such as space or event management require up-to-date information of the facility that are currently inadequately delivered, expensive and time consuming to update and deliver to customers. • major building upgrades are being planned that will put considerable strain on existing Facilities Portfolio services, and their capacity to manage them effectively While some of these concerns are unique to the House, many will be common to larger commercial and institutional portfolios. The work described here supported a complementary task which sought to identify if a building information model – an integrated building database – could be created, that would support asset & facility management functions (see Sydney Opera House – FM Exemplar Project, Report Number: 2005-001-C-4 Building Information Modelling for FM at Sydney Opera House), a business strategy that has been well demonstrated. The development of the BIMSS - Open Specification for BIM has been surprisingly straightforward. The lack of technical difficulties in converting the House’s existing conventions and standards to the new model based environment can be related to three key factors: • SOH Facilities Portfolio – the internal group responsible for asset and facility management - have already well established building and documentation policies in place. The setting and adherence to well thought out operational standards has been based on the need to create an environment that is understood by all users and that addresses the major business needs of the House. • The second factor is the nature of the IFC Model Specification used to define the BIM protocol. The IFC standard is based on building practice and nomenclature, widely used in the construction industries across the globe. For example the nomenclature of building parts – eg ifcWall, corresponds to our normal terminology, but extends the traditional drawing environment currently used for design and documentation. This demonstrates that the international IFC model accurately represents local practice for building data representation and management. • a BIM environment sets up opportunities for innovative processes that can exploit the rich data in the model and improve services and functions for the House: for example several high-level processes have been identified that could benefit from standardized Building Information Models such as maintenance processes using engineering data, business processes using scheduling, venue access, security data and benchmarking processes using building performance data. The new technology matches business needs for current and new services. The adoption of IFC compliant applications opens the way forward for shared building model collaboration and new processes, a significant new focus of the BIM standards. In summary, SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. These BIM standards and their application to the Opera House are intended as a template for other organisations to adopt for the own procurement and facility management activities. Appendices provide an overview of the IFC Integrated Object Model and an understanding IFC Model Data.
Resumo:
“SOH see significant benefit in digitising its drawings and operation and maintenance manuals. Since SOH do not currently have digital models of the Opera House structure or other components, there is an opportunity for this national case study to promote the application of Digital Facility Modelling using standardized Building Information Models (BIM)”. The digital modelling element of this project examined the potential of building information models for Facility Management focusing on the following areas: • The re-usability of building information for FM purposes • BIM as an Integrated information model for facility management • Extendibility of the BIM to cope with business specific requirements • Commercial facility management software using standardised building information models • The ability to add (organisation specific) intelligence to the model • A roadmap for SOH to adopt BIM for FM The project has established that BIM – building information modelling - is an appropriate and potentially beneficial technology for the storage of integrated building, maintenance and management data for SOH. Based on the attributes of a BIM, several advantages can be envisioned: consistency in the data, intelligence in the model, multiple representations, source of information for intelligent programs and intelligent queries. The IFC – open building exchange standard – specification provides comprehensive support for asset and facility management functions, and offers new management, collaboration and procurement relationships based on sharing of intelligent building data. The major advantages of using an open standard are: information can be read and manipulated by any compliant software, reduced user “lock in” to proprietary solutions, third party software can be the “best of breed” to suit the process and scope at hand, standardised BIM solutions consider the wider implications of information exchange outside the scope of any particular vendor, information can be archived as ASCII files for archival purposes, and data quality can be enhanced as the now single source of users’ information has improved accuracy, correctness, currency, completeness and relevance. SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. There have been remarkably few technical difficulties in converting the House’s existing conventions and standards to the new model based environment. This demonstrates that the IFC model represents world practice for building data representation and management (see Sydney Opera House – FM Exemplar Project Report Number 2005-001-C-3, Open Specification for BIM: Sydney Opera House Case Study). Availability of FM applications based on BIM is in its infancy but focussed systems are already in operation internationally and show excellent prospects for implementation systems at SOH. In addition to the generic benefits of standardised BIM described above, the following FM specific advantages can be expected from this new integrated facilities management environment: faster and more effective processes, controlled whole life costs and environmental data, better customer service, common operational picture for current and strategic planning, visual decision-making and a total ownership cost model. Tests with partial BIM data – provided by several of SOH’s current consultants – show that the creation of a SOH complete model is realistic, but subject to resolution of compliance and detailed functional support by participating software applications. The showcase has demonstrated successfully that IFC based exchange is possible with several common BIM based applications through the creation of a new partial model of the building. Data exchanged has been geometrically accurate (the SOH building structure represents some of the most complex building elements) and supports rich information describing the types of objects, with their properties and relationships.
Resumo:
This Digital Modelling Report incorporates the previous research completed for the FM Exemplar Project utilising the Sydney Opera House as a case study. The research has demonstrated significant benefits in digitising design documentation and operational and maintenance manuals. Since Sydney Opera House do not have digital models of its structure, there is an opportunity to investigate the application of Digital Facility Modelling using standardised Building Information Models (BIM). The digital modelling research project has examined the potential of standardised building information models to develop a digital facility model supporting facilities management (FM). The focus of this investigation was on the following areas: • The re-usability of standardised building information models (BIM) for FM purposes. • The potential of BIM as an information framework acting as integrator for various FM data sources. • The extendibility and flexibility of the BIM to cope with business specific data and requirements. • Commercial FM software using standardised building information models. • The ability to add (organisation-specific) intelligence to the model. • A roadmap for Sydney Opera House to adopt BIM for FM.
Resumo:
Searching academic databases for records on ‘business failure’, ‘business distress’ or ‘bankruptcy’ yields a large body of studies on qualitative, empirical, theoretical and simulation aspects. It is a central part of this research to distil from this large quantity of potentially relevant reports and methodologies those which can both flag and predict business failure in the construction industry. An additional search term, such as, ‘construction’, ‘construction industry’ or ‘contractor’ yields a much smaller number of hits, many of which emphasize the construction industry’s distinctive characteristics. We scientists need first to understand the subject of investigation and the environment in which it lives. To do so, an analysis of existing successful and failed approaches to particular research questions is helpful before embarking on new territory. This guides the structure of the following report for we first review papers that specifically report on aspects of business failure in the construction industry followed by, (a) an overview of promising candidates borrowed from other disciplines and industries, and (b) a possible novel approach. An Australian (Queensland) perspective on the topic will also drive this investigation as most of the published research has been applied to the US and UK construction industries.
Resumo:
This paper analyzes the performance of some of the widely used voltage stability indices, namely, singular value, eigenvalue, and loading margin with different static load models. Well-known ZIP model is used to represent loads having components with different power to voltage sensitivities. Studies are carried out on a 10-bus power system and the New England 39-bus power system models. The effects of variation of load model on the performance of the voltage stability indices are discussed. The choice of voltage stability index in the context of load modelling is also suggested in this paper.
Resumo:
Aim: To investigate workplace cultures in the acquisition of computer usage skills by mature age workers. Methods: Data were gathered through focus groups conducted at job network centres in the Greater Brisbane metropolitan region. Participants who took part were a mixture of workers and job-seekers. Results: The results suggest that mature age workers can be exposed to inappropriate computer training practices and age-insensitive attitudes towards those with low base computer skills. Conclusions: There is a need for managers to be observant of ageist attitudes in the work place and to develop age-sensitive strategies to help mature age workers learn computer usage skills. Mature age workers also need to develop skills in ways which are practical and meaningful to their work.
Resumo:
Facility managers have to acquire, integrate, edit and update diverse facility information ranging from building elements & fabric data, operational costs, contract types, room allocation, logistics, maintenance, etc. With the advent of standardized Building Information Models (BIM) such as the Industry Foundation Classes (IFC) new opportunities are available for Facility Managers to manage their FM data. The usage of IFC supports data interoperability between different software systems including the use of operational data for facility management systems. Besides the re-use of building data, the Building Information Model can be used as an information framework for storing and retrieving FM related data. Currently several BIM driven FM systems are available including IFC compliant ones. These systems have the potential to not only manage primary data more effectively but also to offer practical systems for detailed monitoring, and analysis of facility performance that can underpin innovative and more cost effective management of complex facilities.