328 resultados para Cold load pickup
Resumo:
The load-deflection and ultimate strength behaviour of longitudinally stiffened plates with openings was studied using a second-order elastic post-buckling analysis and a rigid-plastic analysis. The ultimate strength was predicted from the intersection point of elastic and rigid-plastic curves and the Perry strut formula. Comparison with experimental results shows that satisfactory prediction of ultimate strength can be obtained by this simple method. Effects of the size of opening, the initial geometrical imperfections and the plate slenderness ratio on the strength of perforated stiffened plates were also studied.
Resumo:
Cold-formed tubular sections are widely used in many modern steel structures. Two innovative cold-formed sections have been introduced to the Australian building industry. They are the 'in-line' galvanized rectangular hollow section (RHS) tubes and the hollow flange beams (HFB). They offer significant advantages but at the same time provide challenges to designers because of their special characteristics. The application, manufacturing, advantages and characteristics of these two sections are described.
Resumo:
Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. Shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. Hence detailed numerical and experimental studies of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were undertaken to investigate the shear behaviour and strength of LCBs with web openings. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This research showed a significant reduction in shear capacities of LCBs when large web openings are included for the purpose of locating building services. A cost effective method of eliminating such detrimental effects of large circular web openings was also therefore investigated using experimental and numerical studies. For this purpose LCBS were reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses that were welded and screw-fastened to the web of LCBs. These studies showed that plate stiffeners were the most suitable. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses were then proposed for LCBs with web openings to restore their original shear capacities. This paper presents the details of finite element analyses and experiments of LCBs with web openings in shear, and the development of improved shear design rules. It then describes the experimental and numerical studies to determine the optimum plate stiffener arrangements and the results. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.
Resumo:
The effects of suspension parameters and driving conditions on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer are investigated in this study. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspensions is formulated based on fluid mechanics and thermodynamics and validated through test results. The effects of road surface conditions, driving speeds, air line inside diameter and connector inside diameter on dynamic load-sharing capability of the semi-trailer were analyzed in terms of load-sharing criteria. Simulation results indicate that, when larger air lines and connectors are employed, the DLSC (Dynamic Load-Sharing Coefficient) optimization ratio reaches its peak value when the road roughness is medium. The optimization ratio fluctuates in a complex manner as driving speed increases. The results also indicate that if the air line inside diameter is always assumed to be larger than the connector inside diameter, the influence of air line inside diameter on load-sharing is more significant than that of the connector inside diameter. The proposed approach can be used for further study of the influence of additional factors (such as vehicle load, static absolute air pressure and static height of air spring) on load-sharing and the control methods for multi-axle air suspensions with longitudinal air line.
Resumo:
This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
Cryotherapy is currently used in various clinical, rehabilitative, and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion(CWI; 8±1°C), on skin microcirculation in the mid- thigh region. Methods: The skin area examined was a 3 × 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05); however no betweengroup differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.
Resumo:
This paper investigates: - correlation between transit route passenger loading and travel distance - its implications on quality of service (QoS) and resource productivity. It uses Automatic Fare Collection (AFC) data across a weekday on a premium bus line in Brisbane, Australia. A composite load-distance factor is proposed as a new measure for profiling transit route on-board passenger comfort QoS. Understanding these measures and their correlation is important for planning, design, and operational activities.
Resumo:
This paper investigates quality of service and resource productivity implications of transit route passenger loading and travel distance. Weekday Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate correlation between load factor and distance factor. Relationships between boardings and transit work indicate that distance factor generally increases with load factor. Time series analysis is then presented by examining each direction on an hour by hour basis. Inbound correlation is medium to strong across the entire span of service and strong for daytime services up to 19:30, while outbound correlation is strong across the entire span. Passengers tend to be making longer distance, peak direction commuter trips under the least comfortable conditions under stretched peak schedules than off-peak. Therefore productivity gains may be possible by adjusting fleet utilization during off-peak times. Weekday profiles by direction are established for a composite load-distance factor. A threshold corresponding to standing passengers on the Maximum Load Segment reveals that on-board loading and travel distance combined are more severe during the morning inbound peak than evening outbound peak, although the sharpness of the former suggests that encouraging shoulder peak travel during the morning would be more effective than evening peak. Further research suggested includes: consideration of travel duration factor, relating noise within hour to Peak Hour Factor, profiling load-distance factor across a range of case studies, and relating load-distance factor threshold to line length.
Resumo:
Load bearing LSF walls are commonly made of cold-formed steel frames, gypsum plasterboards and insulation, and their fire performance is an important aspect of design. Many experimental and numerical studies have been conducted on the fire performance of LSF walls at the Queensland University of Technology (QUT). These studies have shown that increasing the number or thickness or quality of gypsum plasterboards has improved the fire resistance ratings (FRR) of LSF walls while the use of cavity insulation has reduced their FRR. Therefore new LSF wall systems with external insulation sandwiched between two layers of plasterboards were proposed, which provided higher FRR than cavity insulated walls. There are also other parameters that can improve the fire performance of LSF walls such as the steel type, stud geometry and depth, type of screw fasteners used, joints in the plasterboard and the plasterboard fall off time. This paper presents a review of the fire performance of LSF walls as a function of these parameters based on our research at QUT. Their effects on both the thermal and structural performance of LSF walls are discussed in detail and suitable improvements are recommended, for example, improved plasterboard joint types.
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls are commonly made of conventional lipped channel sections and gypsum plasterboards. Recently, innovative steel sections such as hollow flange channel sections have been proposed as studs in LSF wall frames with a view to improve their fire resistance ratings. A series of full scale fire tests was then undertaken to investigate the fire performance of the new LSF wall systems under standard fire conditions. Test wall frames made of hollow flange section studs were lined with fire resistant gypsum plasterboards on both sides, and were subjected to increasing temperatures as given by the standard fire curve on one side. Both uninsulated and cavity insulated walls were tested with varying load ratios from 0.2 to 0.6. This paper presents the details of this experimental study on the fire performance of LSF walls and the results. Test results showed that the walls made of the new hollow flange channel section studs have a superior fire performance in comparison to that of lipped channel section stud walls. They also showed that the fire performance of cavity insulated walls was inferior to that of uninsulated walls. The reasons for this fire behaviour are described in this paper.
Resumo:
This research is carried out by using finite element modelling of building prototypes with three different layouts (rectangular, octagonal and L-shaped) for three different heights (98.0 m, 147.0 m and 199.5 m) for the optimization of lateral load-resisting systems in composite high-rise buildings. Variations of lateral bracings (different number and varied placement along model height of belt-truss and outrigger floors) with RCC (reinforced cement concrete) core wall are used in composite high-rise building models. Prototypes of composite buildings are analysed for dynamic wind and seismic loads. The effects on serviceability (deflection and frequency) of models are studied and conclusions are deduced.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.