253 resultados para Coated Materials, Biocompatible
Resumo:
Through creative practice and written research, this thesis explores the peculiar qualities of surface materials, revealing a broader ethos of practice which I identify as care. I propose that care arises as a mode of being between artist and work, work and beholder, and between the parts of the work. The thesis situates the art practice within an ethical framework, premised on, but extending, Heidegger's ontological equation of care with being. The original contribution is in the claim that the particular qualities of worldly matter generate the terms for care as a particular mode of engagement that is reciprocal and intransitive.
Resumo:
This thesis presents the development of a rapid, sensitive and reproducible spectroscopic method for the detection of TNT in forensic and environmental applications. Simple nano sensors prepared by cost effective methods were utilized as sensitive platforms for the detection of TNT by surface enhanced Raman spectroscopy. The optimization of the substrate and the careful selection of a suitable recognition molecule contributed to the significant improvements of sensitive and selective targeting over current detection methods. The work presented in this thesis paves the way for effective detection and monitoring of explosives residues in law enforcement and environmental health applications.
Resumo:
Natural nanopatterned surfaces (nNPS) present on insect wings have demonstrated bactericidal activity [1, 2]. Fabricated nanopatterned surfaces (fNPS) derived by characterization of these wings have also shown superior bactericidal activity [2]. However bactericidal NPS topologies vary in both geometry and chemical characteristics of the individual features in different insects and fabricated surfaces, rendering it difficult to ascertain the optimum geometrical parameters underling bactericidal activity. This situation calls for the adaptation of new and emerging techniques, which are capable of fabricating and characterising comparable structures to nNPS from biocompatible materials. In this research, CAD drawn nNPS representing an area of 10 μm x10 μm was fabricated on a fused silica glass by Nanoscribe photonic professional GT 3D laser lithography system using two photon polymerization lithography. The glass was cleaned with acetone and isopropyl alcohol thrice and a drop of IP-DIP photoresist from Nanoscribe GmbH was cast onto the glass slide prior to patterning. Photosensitive IP-DIP resist was polymerized with high precision to make the surface nanopatterns using a 780 nm wavelength laser. Both moving-beam fixedsample (MBFS) and fixed-beam moving-sample (FBMS) fabrication approaches were tested during the fabrication process to determine the best approach for the precise fabrication of the required nanotopological pattern. Laser power was also optimized to fabricate the required fNPS, where this was changed from 3mW to 10mW to determine the optimum laser power for the polymerization of the photoresist for fabricating FNPS...
Resumo:
A biocompatible method for fabricating three-dimensional photonic crystals opens up unique opportunities for structurally coloured biodegradable materials, but also for implantable biosensing and targeted therapeutics on the microscale.
Resumo:
Access to energy is a fundamental component of poverty abatement. People who live in homes without electricity are often dependent on dirty, time-consuming and disproportionately expensive solid fuel sources for heating and cooking. [1] In developing countries, the Human Development Index (HDI), which comprises measures of standard of living, longevity and educational attainment, increases rapidly with per capita electricity use. [2] For these reasons the United Nations has been making a concerted effort to promote global access to energy, first by naming 2012 the Year of Sustainable Energy for All, [3] and now by declaring 2014-2024 the Decade of Sustainable Energy for All. [4]
Resumo:
We evaluated three acid-resistant pancreatic enzyme preparations by in vitro assays, and by comparing degree of steatorrhea, creatorrhea, fecal wet weight, and stool energy losses in a randomized crossover study of patients with pancreatic insufficient cystic fibrosis. Aims of the study were to assess (a) the most practicable and reliable indicator of malabsorption; (b) the variation in enzyme batch potency; (c) the decline in enzyme batch potency with prolonged shelf life; and (d) the relative bio-efficacy of the different preparations. In the in vivo study, absorption of energy, nitrogen, and fat did not differ when comparing the three preparations at roughly pharmaceu-tically equivalent doses, but when expressed per capsule of pancreatic supplement ingested, absorption reflected relative enzyme content, favoring the higher potency preparations. Although steatorrhea was reasonably controlled by these preparations, stool energy losses varied from 800 to 1,100 kJ per day, suggesting greater attention be paid to overall energy absorption rather than absorption of individual nutrients. In addition, fecal energy loss correlated more closely with fecal wet weight (r = 0.81; p < 0.05) than with steatorrhea (r = 0.40; ns), such that 1 g wet feces = 8.37 kJ (± 0.14). In vitro enzyme potency varied markedly between batches of the same brand, and also a decline of up to 20% in amylase, lipase, and trypsin activity was noted over an 8-month period for each batch. Both observations have clinical implications at times of represcription. Finally, the higher potency preparations were more effective per capsule and reduced capsule dosage is therefore attainable. © 1993 Raven Press, Ltd., New York.
Resumo:
This book provides a comprehensive analysis of the practical and theoretical issues encountered in Australian civil procedure, including alternative dispute resolution. Each chapter features in-depth questions and notes together with lists of further reading to aid understanding of the issue. It also examines and discusses each substantive and procedural step in the trial process. Topics include jurisdiction of a court to consider a matter, alternative dispute resolution, limitations of actions, commencing proceedings, group proceedings, pleading, summary disposition, gathering evidence, affidavits, interlocutory procedures, settlement, trial and appeal, costs Each of the state, territory and federal procedures is covered.
Resumo:
Rail track undergoes complex loading patterns under moving traffic conditions compared to roads due to its continued and discontinued multi-layered structure, including rail, sleepers, ballast layer, sub-ballast layer, and subgrade. Particle size distributions (PSDs) of ballast, subballast, and subgrade layers can be critical in cyclic plastic deformation of rail track under moving traffic on frequent track degradation of rail tracks, especially at bridge transition zones. Conventional test approaches: static shear and cyclic single-point load tests are however unable to replicate actual loading patterns of moving train. Multi-ring shear apparatus; a new type of torsional simple shear apparatus, which can reproduce moving traffic conditions, was used in this study to investigate influence of particle size distribution of rail track layers on cyclic plastic deformation. Three particle size distributions, using glass beads were examined under different loading patterns: cyclic sin-gle-point load, and cyclic moving wheel load to evaluate cyclic plastic deformation of rail track under different loading methods. The results of these tests suggest that particle size distributions of rail track structural layers have significant impacts on cyclic plastic deformation under moving train load. Further, the limitations in con-ventional test methods used in laboratories to estimate the plastic deformation of rail track materials lead to underestimate the plastic deformation of rail tracks.
Resumo:
The gravity based structure (GBS) with external Steel–Concrete–Steel (SCS) sandwich ice-resistant wall has been developed for the Arctic oil and gas drilling. This paper firstly reported the experimental studies on the mechanical properties of steel and concretes under Arctic low temperature. With the test data, design equations were developed to incorporate the influences of the low temperature on these mechanical properties. Two types of Arctic GBS structure with flower-conical SCS sandwich shell type and plate type of ice-resistant wall have been developed for the Arctic offshore structure. Besides the studies on the materials, two SCS sandwich prototype shells and plates were, respectively, prepared and tested under patch loading that simulated the localized ice-contact pressure. The structural behaviors of the SCS sandwich structure under patch loading were reported and discussions were made on the influences of different parameters on the structural behavior of the structure. Analytical models were developed to predict the punching shear resistances of the SCS sandwich structure through modifying the code provisions. The accuracies of the developed analytical models were checked through validations against 27 tests in the literature. Corresponding design procedures on resistances of SCS sandwich structure were recommended based on these discussions and validations.
Resumo:
The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.
Resumo:
The use of capacitors for electrical energy storage actually predates the invention of the battery. Alessandro Volta is attributed with the invention of the battery in 1800, where he first describes a battery as an assembly of plates of two different materials (such as copper and zinc) placed in an alternating stack and separated by paper soaked in brine or vinegar [1]. Accordingly, this device was referred to as Volta’s pile and formed the basis of subsequent revolutionary research and discoveries on the chemical origin of electricity. Before the advent of Volta’s pile, however, eighteenth century researchers relied on the use of Leyden jars as a source of electrical energy. Built in the mid-1700s at the University of Leyden in Holland, a Leyden jar is an early capacitor consisting of a glass jar coated inside and outside with a thin layer of silver foil [2, 3]. With the outer foil being grounded, the inner foil could be charged with an electrostatic generator, or a source of static electricity, and could produce a strong electrical discharge from a small and comparatively simple device.
Resumo:
Clinical utility of biodegradable magnesium implants is undermined by the untimely degradation of these materials in vivo. Their high corrosion rate leads to loss of mechanical integrity, peri–implant alkalization and localised accumulation of hydrogen gas. Biodegradable coatings were produced on pure magnesium using RF plasma polymerisation. A monoterpene alcohol with known anti-inflammatory and antibacterial properties was used as a polymer precursor. The addition of the polymeric layer was found to reduce the degradation rate of magnesium in simulated body fluid. The in vitro studies indicated good cytocompatibility of non-adherent THP–1 cells and mouse macrophage cells with the polymer, and the polymer coated sample. The viability of THP–1 cells was significantly improved when in contact with polymer encapsulated magnesium compared to unmodified samples. Collectively, these results suggest plasma enhanced polymer encapsulation of magnesium as a suitable method to control degradation kinetics of this biomaterial.
Resumo:
The book begins with an overview of the use of biomaterials in contemporary healthcare and the process of developing novel biomaterials; the key issues and challenges associated with the design of complex implantable systems are also highlighted. The book then reviews the main materials used in functional biomaterials, particularly their properties and applications. Individual chapters focus on both natural and synthetic polymers, metallic biomaterials, and bio-inert and bioactive ceramics.
Resumo:
Amongst alternative energy sources, photovoltaics hold a considerable promise for it is a plentiful, easily accessible and renewable source of power. Yet, the overall cost of generating electricity using the most advanced silicon based solar cells remains high compared to both traditional and other renewable power generation approaches. Organic thin film photovoltaics are an emerging economically competitive photovoltaic technology that combines manufacturing adaptability, low-cost processing and a lightweight, flexible device end-product. At present, however, commercial use of organic photovoltaics is hindered by low conversion efficiency and poor overall stability of the devices. Encapsulation with high barrier performance materials and structures is one of the key ways to address these issues and improve device lifetime. This paper will briefly outline the current understanding of the major degradation mechanisms, their interrelation and the internal and external factors that initiate these processes. Then, the paper will provide an overview of currently available encapsulant materials, their utility in limiting chemical (water vapor and oxygen penetration) and mechanical degradation within individual layers and device as a whole, and potential drawbacks to their application in organic photovoltaic devices.
Resumo:
Synthetic, natural, or composite, biomaterials occupy a key position in the management of disease and support continuous advancement of health care. Clinical utility of many permanent and biodegradable implants can be significantly improved via surface modification. Here, we discuss a novel polymer material developed from essential oil-based monoterpene alcohol using plasma polymerisation. The developed coatings are cytocompatible and limit adhesion and proliferation of a variety of pathogens. The coating can also be used to control degradation behaviour of resorbable materials, such as magnesium.