569 resultados para road traffic injury
Resumo:
Community beliefs related to intentional injury inflicted by others were examined in a population-based telephone survey (n= 1032) in Queensland, Australia. Young adults 18-24 years were nominated as the most likely to be intentionally injured. 89.1% of respondents nominating this group believed that the injury incidents occur in alcohol environments. Though respondents from this age group also identified 18-24 yo as most likely to be intentionally injured, this was at a significantly lower level than did parents or 25-64 yo respondents. Responsibility for preventing injuries was placed on proprietors of licensed premises, schools and parents/family of the victim for alcohol, school and home environments respectively. Beliefs were aligned with prevalence data on intentional injury demonstrating a high level of awareness in the community about likely victims and situations where intentional injuries occur. Interventions could target families of young adults to capitalize on high levels of awareness about young adult vulnerability.
Resumo:
A road bridge containing disused flatbed rail wagons as the primary deck superstructure was performance tested in a low volume, high axle load traffic road in Queensland, Australia; some key results are presented in this paper. A fully laden truck of total weight 28.88 % of the serviceability design load prescribed in the Australian bridge code was used; its wheel positions were accurately captured using a high speed camera and synchronised with the real‐time deflections and strains measured at the critical members of the flat rail wagons. The strains remained well below the yield and narrated the existence of composite action between the reinforced concrete slab pavement and the wagon deck. A three dimensional grillage model was developed and calibrated using the test data, which established the structural adequacy of the rail wagons and the positive contribution of the reinforced concrete slab pavement to resist high axle traffic loads on a single lane bridge in the low volume roads network.
Resumo:
A process evaluation enables understanding of critical issues that can inform the improved, ongoing implementation of an intervention program. This study describes the process evaluation of a comprehensive, multi-level injury prevention program for adolescents. The program targets change in injury associated with violence, transport and alcohol risks and incorporates two primary elements: an 8-week, teacher delivered attitude and behaviour change curriculum for Grade 8 students; and a professional development program for teachers on school level methods of protection, focusing on strategies to increase students’ connectedness to school.
Resumo:
Background: Trauma resulting from traffic crashes poses a significant problem in highly motorised countries. Over a million people worldwide are killed annually and 50 million are critically injured as a result of traffic collisions. In Australia, road crashes cost an average of $17 billion annually in personal loss of income and quality of life, organisational losses in productivity and workplace quality, and health care costs. Driver aggression has been identified as a key factor contributing to crashes, and many motorists report experiencing mild forms of aggression (e.g., rude gestures, horn honking). However despite this concern, driver aggression has received relatively little attention in empirical research, and existing research has been hampered by a number of methodological and conceptual shortcomings. Specifically, there has been substantial disagreement regarding what constitutes aggressive driving and a failure to examine both the situational factors and the emotional and cognitive processes underlying driver aggression. To enhance current understanding of aggressive driving, a model of driver aggression that highlights the cognitive and emotional processes at play in aggressive driving incidents is proposed. Aims: The research aims to improve current understanding of the complex nature of driver aggression by testing and refining a model of aggressive driving that incorporates the person-related and situational factors and the cognitive and emotional appraisal processes fundamental to driver aggression. In doing so, the research will assist to provide a clear definition of what constitutes aggressive driving, assist to identify on-road incidents that trigger driver aggression, and identify the emotional and cognitive appraisal processes that underlie driver aggression. Methods: The research involves three studies. Firstly, to contextualise the model and explore the cognitive and emotional aspects of driver aggression, a diary-based study using self-reports of aggressive driving events will be conducted with a general population of drivers. This data will be supplemented by in-depth follow-up interviews with a sub-sample of participants. Secondly, to test generalisability of the model, a large sample of drivers will be asked to respond to video-based scenarios depicting driving contexts derived from incidents identified in Study 1 as inciting aggression. Finally, to further operationalise and test the model an advanced driving simulator will be used with sample of drivers. These drivers will be exposed to various driving scenarios that would be expected to trigger negative emotional responses. Results: Work on the project has commenced and progress on the first study will be reported.
Resumo:
The greatly increased risk of being killed or injured in a car crash for the young novice driver has been recognised in the road safety and injury prevention literature for decades. Risky driving behaviour has consistently been found to contribute to traffic crashes. Researchers have devised a number of instruments to measure this risky driving behaviour. One tool developed specifically to measure the risky behaviour of young novice drivers is the Behaviour of Young Novice Drivers Scale (BYNDS) (Scott-Parker et al., 2010). The BYNDS consists of 44 items comprising five subscales for transient violations, fixed violations, misjudgement, risky driving exposure, and driving in response to their mood. The factor structure of the BYNDS has not been examined since its development in a matched sample of 476 novice drivers aged 17-25 years. Method: The current research attempted to refine the BYNDS and explore its relationship with the self-reported crash and offence involvement and driving intentions of 390 drivers aged 17-25 years (M = 18.23, SD = 1.58) in Queensland, Australia, during their first six months of independent driving with a Provisional (intermediate) driver’s licence. A confirmatory factor analysis was undertaken examining the fit of the originally proposed BYNDS measurement model. Results: The model was not a good fit to the data. A number of iterations removed items with low factor loadings, resulting in a 36-item revised BYNDS which was a good fit to the data. The revised BYNDS was highly internally consistent. Crashes were associated with fixed violations, risky driving exposure, and misjudgement; offences were moderately associated with risky driving exposure and transient violations; and road-rule compliance intentions were highly associated with transient violations. Conclusions: Applications of the BYNDS in other young novice driver populations will further explore the factor structure of both the original and revised BYNDS. The relationships between BYNDS subscales and self-reported risky behaviour and attitudes can also inform countermeasure development, such as targeting young novice driver non-compliance through enforcement and education initiatives.
Resumo:
Road dust contain potentially toxic pollutants originating from a range of anthropogenic sources common to urban land uses and soil inputs from surrounding areas. The research study analysed the mineralogy and morphology of dust samples from road surfaces from different land uses and background soil samples to characterise the relative source contributions to road dust. The road dust consist primarily of soil derived minerals (60%) with quartz averaging 40-50% and remainder being clay forming minerals of albite, microcline, chlorite and muscovite originating from surrounding soils. About 2% was organic matter primarily originating from plant matter. Potentially toxic pollutants represented about 30% of the build-up. These pollutants consist of brake and tire wear, combustion emissions and fly ash from asphalt. Heavy metals such as Zn, Cu, Pb, Ni, Cr and Cd primarily originate from vehicular traffic while Fe, Al and Mn primarily originate from surrounding soils. The research study confirmed the significant contribution of vehicular traffic to dust deposited on urban road surfaces.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
This report discusses findings of a case study into "Road Construction Safety" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Queensland Department of Transport and Main Roads (QTMR) has taken a leadership role in developing a safer working environment for road construction workers. In the past decades, a range of initiatives have been introduced to contribute to improved performance in this area. Several initiatives have been undertaken by QTMR as part of their overarching commitment to safety. Three such initiatives form the basis for this case study investigation, in order to better illustrate the nature of R&D investment and its impact on day-to-day operations and the supply chain. These are the development and implementation of: (i) the Mechanical Traffic Aid: (ii) the Thermal Imaging Camera; and (iii) the Trailer-based CCTV (camera). This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
Scientific efforts to understand and reduce the occurrence of road crashes continue to expand, particularly in the areas of vulnerable road user groups. Three groups that are receiving increasing attention within the literature are younger drivers, motorcyclists and older drivers. These three groups are at an elevated risk of being in a crash or seriously injured, and research continues to focus on the origins of this risk as well as the development of appropriate countermeasures to improve driving outcomes for these cohorts. However, it currently remains unclear what factors produce the largest contribution to crash risk or what countermeasures are likely to produce the greatest long term positive effects on road safety. This paper reviews research that has focused on the personal and environmental factors that increase crash risk for these groups as well as considers direction for future research in the respective areas. A major theme to emerge from this review is that while there is a plethora of individual and situational factors that influence the likelihood of crashes, these factors often combine in an additive manner to exacerbate the risk of both injury and fatality. Additionally, there are a number of risk factors that are pertinent for all three road user groups, particularly age and the level of driving experience. As a result, targeted interventions that address these factors are likely to maximise the flow-on benefits to a wider range of road users. Finally, there is a need for further research that aims to bridge the research-to-practice gap, in order to develop appropriate pathways to ensure that evidenced-based research is directly transferred to effective policies that improve safety outcomes.
Resumo:
Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.
Resumo:
Prevention and safety promotion programmes. Traditionally, in-depth investigations of crash risks are conducted using exposure controlled study or case-control methodology. However, these studies need either observational data for control cases or exogenous exposure data like vehicle-kilometres travel, entry flow or product of conflicting flow for a particular traffic location, or a traffic site. These data are not readily available and often require extensive data collection effort on a system-wide basis. Aim: The objective of this research is to propose an alternative methodology to investigate crash risks of a road user group in different circumstances using readily available traffic police crash data. Methods: This study employs a combination of a log-linear model and the quasi-induced exposure technique to estimate crash risks of a road user group. While the log-linear model reveals the significant interactions and thus the prevalence of crashes of a road user group under various sets of traffic, environmental and roadway factors, the quasi-induced exposure technique estimates relative exposure of that road user in the same set of explanatory variables. Therefore, the combination of these two techniques provides relative measures of crash risks under various influences of roadway, environmental and traffic conditions. The proposed methodology has been illustrated using Brisbane motorcycle crash data of five years. Results: Interpretations of results on different combination of interactive factors show that the poor conspicuity of motorcycles is a predominant cause of motorcycle crashes. Inability of other drivers to correctly judge the speed and distance of an oncoming motorcyclist is also evident in right-of-way violation motorcycle crashes at intersections. Discussion and Conclusions: The combination of a log-linear model and the induced exposure technique is a promising methodology and can be applied to better estimate crash risks of other road users. This study also highlights the importance of considering interaction effects to better understand hazardous situations. A further study on the comparison between the proposed methodology and case-control method would be useful.
Resumo:
- The role of illegal behaviours in road crashes - Three case studies in managing illegal road user behaviour: an Australian perspective - Current and emerging challenges, including the need to: -reduce punishment avoidance -identify and manage recidivist offenders -address community attitudes and perceptions - Countermeasure implications
Resumo:
Injury is the leading cause of death among young people, and involvement in health risk behaviors, such as alcohol use and transport-related risks, is related to increased risk for injury. Effective health promotion programs for adolescents focus on multiple levels, including relationships with peers and parents, student knowledge, behavior and attitudes, and school-level factors such as school connectedness. This study describes the pilot evaluation of a comprehensive, multi-level injury prevention program for 13-14 year old adolescents, targeting change in injury associated with transport and alcohol risks. The program, called Skills for Preventing Injury in Youth (SPIY), incorporates two primary elements: an 8-week, teacher delivered attitude and behavior change curriculum with peer protection and first aid messages; and professional development for program teachers focusing on strategies to increase students’ connectedness to school. Five Australian high schools were recruited for the pilot evaluation research, with three being assigned to receive intervention components and two assigned as curriculum-as-usual controls. In the intervention schools, 118 Year 8 students participated in surveys at baseline, with 105 completing surveys at follow up, six months following the intervention. In the control schools, 196 Year 8 students completed surveys at baseline and 207 at follow up. Survey measures included self-reported injury, risk taking behavior and school connectedness. Results showed that students in the control schools were significantly more likely to report riding bikes without helmets, riding with dangerous drivers, having driven cars on the road, and using alcohol six months after the program, while the intervention group showed no such increase in these behaviors. Additionally, students in the control schools were significantly more likely to report having had pedestrian-related injuries at follow up than they were at the baseline measurement, while intervention school students showed no change. There was also a trend observed in terms of a decrease in bicycle related injuries among intervention school students, compared with a slight increasing trend in bicycle injuries among control students. Overall, scores on the school connectedness scale decreased significantly from baseline to follow up for both intervention and control students, however measurement limitations may have impacted on results relating to students’ connectedness. Overall, the SPIY program has shown promising results in regards to prevention of students’ health risk behavior and injuries. Evidence suggests that the curriculum component was important; however there was limited evidence to suggest that teacher training in school connectedness strategies contributed to these promising results. While school connectedness may be an important factor to target in risk and injury prevention programs, programs may need to incorporate whole-of-school strategies or target a broader range of teachers than were selected for the current research.
Resumo:
The National Road Safety Strategy 2011-2020 outlines plans to reduce the burden of road trauma via improvements and interventions relating to safe roads, safe speeds, safe vehicles, and safe people. It also highlights that a key aspect in achieving these goals is the availability of comprehensive data on the issue. The use of data is essential so that more in-depth epidemiologic studies of risk can be conducted as well as to allow effective evaluation of road safety interventions and programs. Before utilising data to evaluate the efficacy of prevention programs it is important for a systematic evaluation of the quality of underlying data sources to be undertaken to ensure any trends which are identified reflect true estimates rather than spurious data effects. However, there has been little scientific work specifically focused on establishing core data quality characteristics pertinent to the road safety field and limited work undertaken to develop methods for evaluating data sources according to these core characteristics. There are a variety of data sources in which traffic-related incidents and resulting injuries are recorded, which are collected for a variety of defined purposes. These include police reports, transport safety databases, emergency department data, hospital morbidity data and mortality data to name a few. However, as these data are collected for specific purposes, each of these data sources suffers from some limitations when seeking to gain a complete picture of the problem. Limitations of current data sources include: delays in data being available, lack of accurate and/or specific location information, and an underreporting of crashes involving particular road user groups such as cyclists. This paper proposes core data quality characteristics that could be used to systematically assess road crash data sources to provide a standardised approach for evaluating data quality in the road safety field. The potential for data linkage to qualitatively and quantitatively improve the quality and comprehensiveness of road crash data is also discussed.
Resumo:
Many governments throughout the world rely heavily on traffic law enforcement programs to modify driver behaviour and enhance road safety. There are two related functions of traffic law enforcement, apprehension and deterrence, and these are achieved through three processes: the establishment of traffic laws, the policing of those laws, and the application of penalties and sanctions to offenders. Traffic policing programs can vary by visibility (overt or covert) and deployment methods (scheduled and non-scheduled), while sanctions can serve to constrain, deter or reform offending behaviour. This chapter will review the effectiveness of traffic law enforcement strategies from the perspective of a range of high-risk, illegal driving behaviours including drink/drug driving, speeding, seat belt use and red light running. Additionally, this chapter discusses how traffic police are increasingly using technology to enforce traffic laws and thus reduce crashes. The chapter concludes that effective traffic policing involves a range of both overt and covert operations and includes a mix of automatic and more traditional manual enforcement methods. It is important to increase both the perceived and actual risk of detection by ensuring that traffic law enforcement operations are sufficiently intensive, unpredictable in nature and conducted as widely as possible across the road network. A key means of maintaining the unpredictability of operations is through the random deployment of enforcement and/or the random checking of drivers. The impact of traffic enforcement is also heightened when it is supported by public education campaigns. In the future, technological improvements will allow the use of more innovative enforcement strategies. Finally, further research is needed to continue the development of traffic policing approaches and address emerging road safety issues.