339 resultados para molecular modification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite dielectrics hold a promising future for the next generation of insulation materials because of their excellent physical, chemical, and dielectric properties. In the presented study, we investigate the use of plasma processing technology to further enhance the dielectric performance of epoxy resin/SiO2 nanocomposite materials. The SiO2 nanoparticles are treated with atmospheric-pressure non-equilibrium plasma prior to being added into the epoxy resin host. Fourier transform infrared spectroscopy (FTIR) results reveal the effects of the plasma process on the surface functional groups of the treated nanoparticles. Scanning electron microscopy (SEM) results show that the plasma treatment appreciably improves the dispersion uniformity of nanoparticles in the host polymer. With respect to insulation performance, the epoxy/plasma-treated SiO2 specimen shows a 29% longer endurance time than the epoxy/untreated SiO2 nanocomposite under electrical aging. The Weibull plots of the dielectric breakdown field intensity suggest that the breakdown strength of the nanocomposite with the plasma pre-treatment on the nanoparticles is improved by 23.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44+ progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44+p27+ cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27+ cells and their proliferation. Our results suggest that pathways controlling p27+ mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.g., profiling of DNA damage adducts, RNA modification profiling, proteomics, and metabolomics) stand at the interface between chemistry and biology, and have yielded valuable outcomes from the study of a diversity of complicated diseases. Particularly, these technologies are being broadly used to dissect various biological aspects of HCC with the purpose of biomarker discovery, interrogating pathogenesis as well as for therapeutic discovery. This proof of knowledge-based critical review aims at exploring the selected applications of those defined omics technologies in the HCC niche with an emphasis on translational applications driven by advanced mass spectrometry, toward the specific clinical use for HCC patients. This approach will enable the biomedical community, through both basic research and the clinical sciences, to enhance the applicability of mass spectrometry-based omics technologies in dissecting the pathogenesis of HCC and could lead to novel therapeutic discoveries for HCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aimed at understanding the molecular mechanisms involved in the superior integration of micro-roughened titanium implant surfaces with the surrounding bone, when compared with their smooth surfaces. It involved studying the role of microRNAs and cell signaling pathways in the molecular regulation of bone cells on topographically modified titanium dental implants. The findings suggest a highly regulated microRNA-mediated control of molecular mechanisms during the process of bone formation that may be responsible for the superior osseointegration properties on micro-roughened titanium implant surfaces and indicate the possibility of using microRNA modulators to enhance osseointegration in clinically demanding circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

miR-126 has been implicated in the processes of inflammation and angiogenesis. Through these processes, miR-126 is implicated in cancer biology, but its role there has not been well reviewed. The aim of this review is to examine the molecular mechanisms and clinicopathological significance of miR-126 in human cancers. miR-126 was shown to have roles in cancers of the gastrointestinal tract, genital tracts, breast, thyroid, lung and some other cancers. Its expression was suppressed in most of the cancers studied. The molecular mechanisms that are known to cause aberrant expression of miR-126 include alterations in gene sequence, epigenetic modification and alteration of dicer abundance. miR-126 can inhibit progression of some cancers via negative control of proliferation, migration, invasion, and cell survival. In some instances, however, miR-126 supports cancer progression via promotion of blood vessel formation. Downregulation of miR-126 induces cancer cell proliferation, migration, and invasion via targeting specific oncogenes. Also, reduced levels of miR-126 are a significant predictor of poor survival of patients in many cancers. In addition, miR-126 can alter a multitude of cellular mechanisms in cancer pathogenesis via suppressing gene translation of numerous validated targets such as PI3K, KRAS, EGFL7, CRK, ADAM9, HOXA9, IRS-1, SOX-2, SLC7A5 and VEGF. To conclude, miR-126 is commonly down-regulated in cancer, most likely due to its ability to inhibit cancer cell growth, adhesion, migration, and invasion through suppressing a range of important gene targets. Understanding these mechanisms by which miR-126 is involved with cancer pathogenesis will be useful in the development of therapeutic targets for the management of patients with cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carcinoma ex pleomorphic adenoma (Ca ex PA) is a carcinoma arising from a primary or recurrent benign pleomorphic adenoma. It often poses a diagnostic challenge to clinicians and pathologists. This study intends to review the literature and highlight the current clinical and molecular perspectives about this entity. The most common clinical presentation of CA ex PA is of a firm mass in the parotid gland. The proportion of adenoma and carcinoma components determines the macroscopic features of this neoplasm. The entity is difficult to diagnose pre-operatively. Pathologic assessment is the gold standard for making the diagnosis. Treatment for Ca ex PA often involves an ablative surgical procedure which may be followed by radiotherapy. Overall, patients with Ca ex PA have a poor prognosis. Accurate diagnosis and aggressive surgical management of patients presenting with Ca ex PA can increase their survival rates. Molecular studies have revealed that the development of Ca ex PA follows a multi-step model of carcinogenesis, with the progressive loss of heterozygosity at chromosomal arms 8q, then 12q and finally 17p. There are specific candidate genes in these regions that are associated with particular stages in the progression of Ca ex PA. In addition, many genes which regulate tumour suppression, cell cycle control, growth factors and cell-cell adhesion play a role in the development and progression of Ca ex PA. It is hopeful that these molecular data can give clues for the diagnosis and management of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Colorectal signet-ring cell carcinoma (SRCC) is rare, and very little detailed information on the molecular biology of the disease is available. METHODS The literature on the clinical, pathological and, in particular, the molecular biology of this rare entity was critically reviewed. The reviewed articles take into account a total of 1,817 cases of SRCC, but only 143 cases have molecular data available. The characteristics of two patients with colorectal SRCC were also discussed. RESULTS Colorectal SRCC mostly occurs in younger patients, is larger and has different site predilection compared with conventional colorectal adenocarcinoma. It can occur as one of the synchronous cancers in the colorectum. The cancer is usually diagnosed at advanced stages because of the late manifestation of symptoms, and aggressive treatment strategy is required. Limited reports in the literature have shown that the variant of colorectal cancer demonstrated a different pattern of genetic alterations of common growth kinase-related oncogenes (K-ras, BRAF), tumour suppressor genes (p53, p16), gene methylation and cell adhesion-related genes related to the Wingless signalling pathway (E-cadherin and beta-catenin) from conventional colorectal adenocarcinoma. Colorectal SRCC also showed high expression of mucin-related genes and genes related to the gastrointestinal system. There was also a higher prevalence of microsatellite instability-high tumours and low Cox-2 expression in colorectal SRCC as opposed to conventional adenocarcinoma. CONCLUSIONS Colorectal SRCC has unique molecular pathological features. The unique molecular profiles in SRCC may provide molecular-based improvements to patient management in colorectal SRCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methylation at promoter CpG islands (CGI) is an epigenetic modification associated with inappropriate gene silencing in multiple tumor types. In the absence of a human pituitary tumor cell line, small interfering RNA-mediated knockdown of the maintenance methyltransferase DNA methyltransferase (cytosine 5)-1 (Dnmt1) was used in the murine pituitary adenoma cell line AtT-20. Sustained knockdown induced reexpression of the fully methylated and normally imprinted gene neuronatin (Nnat) in a time-dependent manner. Combined bisulfite restriction analysis (COBRA) revealed that reexpression of Nnat was associated with partial CGI demethylation, which was also observed at the H19 differentially methylated region. Subsequent genome-wide microarray analysis identified 91 genes that were significantly differentially expressed in Dnmt1 knockdown cells (10% false discovery rate). The analysis showed that genes associated with the induction of apoptosis, signal transduction, and developmental processes were significantly overrepresented in this list (P < 0.05). Following validation by reverse transcription-PCR and detection of inappropriate CGI methylation by COBRA, four genes (ICAM1, NNAT, RUNX1, and S100A10) were analyzed in primary human pituitary tumors, each displaying significantly reduced mRNA levels relative to normal pituitary (P < 0.05). For two of these genes, NNAT and S100A10, decreased expression was associated with increased promoter CGI methylation. Induced expression of Nnat in stable transfected AtT-20 cells inhibited cell proliferation. To our knowledge, this is the first report of array-based "epigenetic unmasking" in combination with Dnmt1 knockdown and reveals the potential of this strategy toward identifying genes silenced by epigenetic mechanisms across species boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.