336 resultados para hydrolytic enzyme production
Resumo:
Virtual Production is a rapidly growing approach to filmmaking that utilises 3D software, virtual camera systems and motion capture technology to visually interact with a real-time virtual environment. The use of these technologies has continued to increase, however, little has been done to document the various approaches for incorporating this new film making technique into a production. This practice-led research project outlines the development of virtual production in the entertainment industry and explores possible strategies for adopting aspects of this new film making technique into the production of short animated films. The outcome is an improved understanding of possible strategies that could be utilised to assist producers and directors with the transition into this new film making technique. - See more at: http://dl4.globalstf.org/?wpsc-product=adopting-virtual-production-for-animated-filmaking#sthash.DLzRph4Z.dpuf
Resumo:
High valent metal(IV)-oxo species, \[M(=O)(Melm)(n)(OAc)](+) (M = Mn-Ni, MeIm = 1-methylimidazole, n = 1-2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas-phase reactions of the metal(II) precursor ions \[M(MeIm)(n)(OAc)](+) (M = Mn-Zn, n = 1-3) with ozone. The precursor ions \[M(MeIm)(OAc)](+) and \[M(MeIm)(2)(OAc)](+) were generated via collision-induced dissociation of the corresponding \[M(MeIm)(3)(OAc)](+) ion. The dependence of ozone reactivity on metal and coordination number is discussed. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper focuses on a case study of local postcard production in a rural community in Western Australia. Drawing on in-depth interviews with key producers of these postcards, the analysis presented explores perceptions of and contexts for the emergence of this production, in turn examining the notion of ‘creativity’ articulated and privileged by this cultural work. Connections are identified between the making of postcards, the broader historical field of local cultural work and the construction of community. This, in turn, forms the basis for consideration of the role and relativity of ‘marginality’.
Resumo:
Studies of place construction in the rural studies literature have largely privileged the role of professionals over that of local lay actors. This paper contributes to redressing this imbalance through a critical case-study of lay postcard production in a rural shire. Drawing on original, qualitative research conducted in the Shire of Ravensthorpe, Western Australia, including in-depth interviews with key participants, the analysis focuses on this lay production—undertaken in the main by women—as cultural work. By emphasising the work of making the postcards along with the cultural work these postcards achieve, this examination foregrounds intersections of material and imagined ruralities. In the process, this study highlights the complexity and importance of this lay contribution to place identity, particularly as positioned within what may be considered rural cultural work.
Resumo:
The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
There are many attractive alternatives to produce chemicals similar to those currently produced from fossil fuel resources. The most viable renewable resource of fixed carbon is biomass. This paper examines processing conditions for the production and recovery of furanics from bagasse as well as bagasse pulp. It is shown that bio-oil consisting mainly of furanics (~84% chloromethly furfural) may be obtained in yields of ~78% and ~87% by weight from bagasse and bagasse pulp respectively using a biphasic acid hydrolysis system. The biphasic system consists of an organic layer of dichloroethane and an aqueous phase of concentrated hydrochloric acid. Generally the lower the impurity content and the higher the cellulose content, the higher the furanics yield.
Resumo:
Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.
Resumo:
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.
Resumo:
This paper gives an overview of an ongoing project endeavouring to advance theory-based production and project management, and the rationale for this approach is briefly justified. The status of the theoretical foundation of production management, project management and allied disciplines is discussed, with emphasis on metaphysical grounding of theories, as well as the nature of the heuristic solution method commonly used in these disciplines. Then, on-going work related to different aspects of production and project management is reviewed from both theoretical and practical orientation. Next, information systems agile project management is explored with a view to its re-use in generic project management. In production management, the consequences and implementation of a new, wider theoretical basis are analyzed. The theoretical implications and negative symptoms of the peculiarities of the construction industry for supply chains and supply chain management in construction are observed. Theoretical paths for improvements of inter-organisational relationships in construction which are fundamental for improvement of construction supply chains are described. To conclude, the observations made in this paper vis-à-vis production, project and supply chain management are related again to the theoretical basis of this paper, and finally directions for theory development and future research are given and discussed.
Resumo:
Expression vectors were constructed for Trichoderma reesei using the promoters, secretion signals and the modular structure of the efficiently expressed and secreted cellulase enzymes EGL2 (Cel5A) and CBH2 (Cel6A) as a prelude to establishing a platform where a gene of interest can be expressed under several promoters simultaneously. The designs featured (i) EGL2sigpro (egl2 promoter and secretion signal), (ii) EGL2cbmlin (egl2 promoter, secretion signal, EGL2 cellulose binding module and linker), (iii) CBH2sigpro (cbh2 promoter and secretion signal) and (iv) CBH2cbmlin (cbh2 promoter, secretion signal, CBH2 cellulose binding module and linker). Recombinant vectors were introduced individually into the high protein-secreting T. reesei RUT-C30 strain to generate single-promoter transformants expressing the Dictyoglomus thermophilum xynB gene that encodes a thermophilic xylanase enzyme (XynB). Ten transformants producing XynB representing each of the four different types of vectors were selected for further testing and the highest XynB production was achieved from a transformant containing 1–2 copies of the EGL2cbmlin vector. Best xylanase producers did not show any particular pattern in terms of the number of gene copies and their mode of integration into the chromosomal DNA. Transformants generated with the cbmlin-type vectors produced multiple forms of XynB which were decorated with various N- and O-glycans. One of the O-glycans was identified as hexuronic acid, whose presence had not been observed previously in the glycosylation patterns of T. reesei.
Resumo:
Fungi are eukaryotic organisms and considered to be less adaptable to extreme environments when compared to bacteria. While there are no thermophilic microfungi in a strict sense, some fungi have adapted to life in the cold. Cold-active microfungi have been isolated from the Antarctic and their enzyme activities explored with a view to finding new candidates for industrial use. On another front, environmental pollution by petroleum products in the Antarctic has led to a search for, and the subsequent discovery of, fungal isolates capable of degrading hydrocarbons. The work has paved the way to developing a bioremedial approach to containing this type of contamination in cold climates. Here we discuss our efforts to map the capability of Antarctic microfungi to degrade oil and also introduce a novel cold-active fungal lipase enzyme.