389 resultados para facial expression
Resumo:
Background Matrix metalloproteinases (MMPs) are a family of endopeptidases that digest the extracellular matrix (ECM). Overexpression of different MMPs has been shown to promote tumour cell invasion in vitro. Tissue inhibitors of matrix metalloproteinases (TIMPs) are specific inhibitors of MMPs that also possess growth-promoting properties. Aims To analyse the expression profile of MMP-2, MMP-9 and TIMP-2 in non-small cell lung cancer (NSCLC) and to assess the impact of expression on survival. Methods This is a retrospective study of patients who underwent resection for stage I-IIIa NSCLC with a post-operative survival >60 days. Patient follow up was a minimum of 2 years. Standard ABC immunohistochemistry was performed on 4μm paraffin-embedded sections from the tumour periphery using monoclonal antibodies to MMP-2, MMP-9 and TIMP-2. Results The results of the immunohistochemistry are set out below. marker tumour expression log-rank survival stromal expression log-rank survival MMP-2 9/72 (13%) p=0.10 34/72 (47%) p=0.34 MMP-9 79/152 (52%) p=0.04* 69/152 (45%) p=0.84 TIMP-2 28/90 (31%) p=0.04* 66/90 (73%) p=0.90 Two or more 16/59 (27%) p=0.007* There were no associations between expression and clinicopathological findings for any tumour marker. There was co-expression of MMP-2 and MMP-9 in tumour cells (p=0.01). Conclusions MMP-2, MMP-9 and TIMP-2 are expressed in NSCLC. MMP-9 and TIMP-2 tumour expression correlate with a poor outcome (both p=0.04) and are potential prognostic markers for NSCLC. Cumulative expression of two or more MMPs/TIMPs may also have increased prognostic significance. Proteases and their inhibitors are novel targets for therapeutic intervention and should be evaluated in NSCLC.
Resumo:
HER2 is an erbB/HER type I tyrosine kinase receptor that is frequently over-expressed in malignant epithelial tumours. Herceptin, a humanised mouse monoclonal antibody to HER2, is proven therapeutically in the management of metastatic breast cancer, significantly prolonging survival when combined with cytotoxic chemotherapeutic agents. Immunohistochemical studies suggest that non-small-cell lung cancer (NSCLC) tumours may over-express HER2. Our aim was to evaluate HER2 gene amplification and semi-quantitative immuno-expression in NSCLC. A total of 344 NSCLC cases were immunostained for HER2 expression in 2 centres using the HercepTest. Fluorescence in situ hybridisation (FISH) analysis for HER2 gene amplification was performed on most positive cases and a subset of negative cases. Fifteen cases (4.3%) demonstrated 2+ or 3+ membranous HER2 immuno-expression. There was no correlation between immuno-expression and tumour histology or grade. Tumours from higher-stage disease were more often HercepTest-positive (p < 0.001). All 4 HercepTest 3 + cases demonstrated gene amplification. One of the 5 2+ cases tested for gene amplification showed areas of borderline amplification and areas of polyploidy. None of the 19 HercepTest-negative cases demonstrated gene amplification or polyploidy (p < 0.001). Gene amplification was demonstrated in all HercepTest 3+ scoring NSCLC cases. Unlike breast cancer, gene amplification and HER2 protein over-expression assessed by the HercepTest appeared to be uncommon in NSCLC. Herceptin may therefore target only a small proportion of NSCLC tumours and be of limited clinical value in this disease, particularly in the adjuvant setting. © 2001 Wiley-Liss, Inc.
Resumo:
Growth and metastatic spread of invasive carcinoma depends on angiogenesis, the formation of new blood vessels. Platelet-derived endothelial cell growth factor (PD-ECGF) is an angiogenic growth factor for a number of solid tumors, including lung, bladder, colorectal, and renal cell cancer. Cervical intraepithelial neoplasia (CIN) is the precursor to squamous cell cervical carcinoma (SCC). Mean vessel density (MVD) increases from normal cervical tissue, through low- and high-grade CIN to SCC. We evaluated PD-ECGF immunoreactivity and correlated its expression with MVD in normal, premalignant, and malignant cervical tissue. PD-ECGF expression was assessed visually within the epithelial tissues and scored on the extent and intensity of staining. MVD was calculated by counting the number of vessels positive for von Willebrand factor per unit area subtending normal or CIN epithelium or within tumor hotspots for SCC. Cytoplasmic and/or nuclear PD-ECGF immunoreactivity was seen in normal epithelium. PD-ECGF expression significantly increased with histologic grade from normal, through low- and high-grade CIN, to SCC (P < .02). A progressive significant increase in the microvessel density was also seen, ranging from a mean of 28 vessels for normal tissue to 57 for SCC (P < .0005). No correlation was found between PD-ECGF expression and MVD (P = .45). We conclude that PD-ECGF expression and MVD increase as the cervix transforms from a normal to a malignant phenotype. PD-ECGF is thymidine phosphorylase, a key enzyme in the activation of fluoropyrimidines, including 5-fluorouracil. Evaluation of PD-ECGF thymidine phosphorylase expression may be important in designing future chemotherapeutic trials in cervical cancer. Copyright (C) 2000 by W.B. Saunders Company.
Resumo:
Early detection, clinical management and disease recurrence monitoring are critical areas in cancer treatment in which specific biomarker panels are likely to be very important in each of these key areas. We have previously demonstrated that levels of alpha-2-heremans-schmid-glycoprotein (AHSG), complement component C3 (C3), clusterin (CLI), haptoglobin (HP) and serum amyloid A (SAA) are significantly altered in serum from patients with squamous cell carcinoma of the lung. Here, we report the abundance levels for these proteins in serum samples from patients with advanced breast cancer, colorectal cancer (CRC) and lung cancer compared to healthy controls (age and gender matched) using commercially available enzyme-linked immunosorbent assay kits. Logistic regression (LR) models were fitted to the resulting data, and the classification ability of the proteins was evaluated using receiver-operating characteristic curve and leave-one-out cross-validation (LOOCV). The most accurate individual candidate biomarkers were C3 for breast cancer [area under the curve (AUC) = 0.89, LOOCV = 73%], CLI for CRC (AUC = 0.98, LOOCV = 90%), HP for small cell lung carcinoma (AUC = 0.97, LOOCV = 88%), C3 for lung adenocarcinoma (AUC = 0.94, LOOCV = 89%) and HP for squamous cell carcinoma of the lung (AUC = 0.94, LOOCV = 87%). The best dual combination of biomarkers using LR analysis were found to be AHSG + C3 (AUC = 0.91, LOOCV = 83%) for breast cancer, CLI + HP (AUC = 0.98, LOOCV = 92%) for CRC, C3 + SAA (AUC = 0.97, LOOCV = 91%) for small cell lung carcinoma and HP + SAA for both adenocarcinoma (AUC = 0.98, LOOCV = 96%) and squamous cell carcinoma of the lung (AUC = 0.98, LOOCV = 84%). The high AUC values reported here indicated that these candidate biomarkers have the potential to discriminate accurately between control and cancer groups both individually and in combination with other proteins. Copyright © 2011 UICC.
Resumo:
Matrix metalloproteinases (MMPs), in particular the gelatinases (MMP-2 and -9), play a significant role in tumour invasion and angiogenesis. The expression and activities of MMPs have not been characterised in malignant mesothelioma (MM) tumour samples. In a prospective study, gelatinase activity was evaluated in homogenised supernatants of snap frozen MM (n = 35), inflamed pleura (IP, n = 12) and uninflammed pleura (UP, n = 14) tissue specimens by semiquantitative gelatin zymography. Matrix metalloproteinases were correlated with clinicopathological factors and with survival using Kaplan-Meier and Cox proportional hazard models. In MM, pro- and active MMP-2 levels were significantly greater than for MMP-9 (P = 0.006, P<0.001). Active MMP-2 was significantly greater in MM than in UP (P=0.04). MMP-2 activity was equivalent between IP and MM, but both pro- and active MMP-9 activities were greater in IP (P=0.02, P=0.009). While there were trends towards poor survival with increasing total and pro-MMP-2 activity (P=0.08) in univariate analysis, they were both independent poor prognostic factors in multivariate analysis in conjunction with weight loss (pro-MMP-2 P = 0.03, total MMP-2 P = 0.04). Total and pro-MMP-2 also contributed to the Cancer and Leukemia Group B prognostic groups. MMP-9 activities were not prognostic. Matrix metalloproteinases, and in particular MMP-2, the most abundant gelatinase, may play an important role in MM tumour growth and metastasis. Agents that reduce MMP synthesis and/or activity may have a role to play in the management of MM. © 2003 Cancer Research UK.
Resumo:
Malignant mesothelioma (MM) is a fatal tumour of increasing incidence which is related to asbestos exposure. This work evaluated expression in MM of Epidermal Growth Factor Receptor (EGFR) by immunohistochemistry in 168 tumour sections and its correlations with clinicopathological and biological factors. The microvessel density (MVD) was derived from CD34 immunostained sections. Hematoxylin and eosin stained sections were examined for intratumoural necrosis. COX-2 protein expression was evaluated with semi-quantitative Western blotting of homogenised tumour supernatants (n = 45). EGFR expression was correlated with survival by Kaplan-Meier and log rank analysis. Univariate and multivariate Cox proportional hazards models were used to compare the effects of EGFR with clinicopathological and biological prognostic factors and prognostic scoring systems. EGFR expression was identified in 74 cases (44%) and correlated with epithelioid cell type (p < 0.0001), good performance status (p < 0.0001), the absence of chest pain (p < 0.0001) and the presence of TN (p = 0.004), but not MVD or COX-2. EGFR expression was a good prognostic factor in univariate analysis (p = 0.01). Independent indicators of poor prognosis in multivariate analysis were non-epithelioid cell type (p = 0.0001), weight loss, performance status and WBC > 8.3 × 10 9 L -1. EGFR status was not an independent prognostic factor. EGFR expression in MM correlates with epithelioid histology and TN. EGFR may be a target for selective therapies in MM. © 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cell line array (CMA) and tissue microarray (TMA) technologies are high-throughput methods for analysing both the abundance and distribution of gene expression in a panel of cell lines or multiple tissue specimens in an efficient and cost-effective manner. The process is based on Kononen's method of extracting a cylindrical core of paraffin-embedded donor tissue and inserting it into a recipient paraffin block. Donor tissue from surgically resected paraffin-embedded tissue blocks, frozen needle biopsies or cell line pellets can all be arrayed in the recipient block. The representative area of interest is identified and circled on a haematoxylin and eosin (H&E)-stained section of the donor block. Using a predesigned map showing a precise spacing pattern, a high density array of up to 1,000 cores of cell pellets and/or donor tissue can be embedded into the recipient block using a tissue arrayer from Beecher Instruments. Depending on the depth of the cell line/tissue removed from the donor block 100-300 consecutive sections can be cut from each CMA/TMA block. Sections can be stained for in situ detection of protein, DNA or RNA targets using immunohistochemistry (IHC), fluorescent in situ hybridisation (FISH) or mRNA in situ hybridisation (RNA-ISH), respectively. This chapter provides detailed methods for CMA/TMA design, construction and analysis with in-depth notes on all technical aspects including tips to deal with common pitfalls the user may encounter. © Springer Science+Business Media, LLC 2011.
Resumo:
Platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) is an enzyme with angiogenic and cell motility properties. Moreover, it is involved in the transformation of fluoropyrimidines into active cytotoxic metabolites, In the present study, the expression of PD-ECGF in normal lung and lung cancer was immunohistochemically evaluated using the P-GF.44C monoclonal antibody. Alveolar and tumoural macrophages mere invariably stained and mere used as an internal control for assessment of the staining. Alveolar epithelium was always negative, whilst bronchiolar epithelium showed occasional positive reactivity. Normal lung and tumour endothelium was occasionally positive, Positive staining in more than 50 per cent of cells was observed in 23/71 squamous carcinomas (32 per cent), 16/38 (42 per cent) adenocarcinomas, and 2/6 (33 per cent) adenosquamous carcinomas. Differentiated areas and areas of squamous metaplasia mere more strongly positive than other tumour areas. All 22 small cell carcinomas and one carcinoid tumour were negative. The present study provides a baseline for future studies in non-small cell lung cancer to correlate PD-ECGF expression with tumour vascularization, prognosis, and response to chemotherapy.
Resumo:
The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.
Resumo:
Background: To directly assess tumor oxygenation in resectable non - small cell lung cancers (NSCLC) and to correlate tumor pO2 and the selected gene and protein expression to treatment outcomes. Methods: Twenty patients with resectable NSCLC were enrolled. Intraoperative measurements of normal lung and tumor pO2 were done with the Eppendorf polarographic electrode. All patients had plasma osteopontin measurements by ELISA. Carbonic anhydrase-IX (CA IX) staining of tumor sections was done in the majority of patients (n = 16), as was gene expression profiling (n = 12) using cDNA microarrays. Tumor pO2 was correlated with CA IX staining, osteopontin levels, and treatment outcomes. Results: The median tumor pO2 ranged from 0.7 to 46 mm Hg (median, 16.6) and was lower than normal lung pO2 in all but one patient. Because both variables were affected by the completeness of lung deflation during measurement, we used the ratio of tumor/normal lung (T/L) pO2 as a reflection of tumor oxygenation. The median T/L pO 2 was 0.13. T/L pO2 correlated significantly with plasma osteopontin levels (r = 0.53, P = 0.02) and CA IX expression (P = 0.006). Gene expression profiling showed that high CD44 expression was a predictor for relapse, which was confirmed by tissue staining of CD44 variant 6 protein. Other variables associated with the risk of relapse were T stage (P = 0.02), T/L pO2 (P = 0.04), and osteopontin levels (P = 0.001). Conclusions: Tumor hypoxia exists in resectable NSCLC and is associated with elevated expression of osteopontin and CA IX. Tumor hypoxia and elevated osteopontin levels and CD44 expression correlated with poor prognosis. A larger study is needed to confirm the prognostic significance of these factors. © 2006 American Association for Cancer Research.
Resumo:
Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO 2 and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, IκB kinase β, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO 2 measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO 2, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO 2 (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy. © 2007 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: This study explored gene expression differences in predicting response to chemoradiotherapy in esophageal cancer. PURPOSE:: A major pathological response to neoadjuvant chemoradiation is observed in about 40% of esophageal cancer patients and is associated with favorable outcomes. However, patients with tumors of similar histology, differentiation, and stage can have vastly different responses to the same neoadjuvant therapy. This dichotomy may be due to differences in the molecular genetic environment of the tumor cells. BACKGROUND DATA: Diagnostic biopsies were obtained from a training cohort of esophageal cancer patients (13), and extracted RNA was hybridized to genome expression microarrays. The resulting gene expression data was verified by qRT-PCR. In a larger, independent validation cohort (27), we examined differential gene expression by qRT-PCR. The ability of differentially-regulated genes to predict response to therapy was assessed in a multivariate leave-one-out cross-validation model. RESULTS: Although 411 genes were differentially expressed between normal and tumor tissue, only 103 genes were altered between responder and non-responder tumor; and 67 genes differentially expressed >2-fold. These included genes previously reported in esophageal cancer and a number of novel genes. In the validation cohort, 8 of 12 selected genes were significantly different between the response groups. In the predictive model, 5 of 8 genes could predict response to therapy with 95% accuracy in a subset (74%) of patients. CONCLUSIONS: This study has identified a gene microarray pattern and a set of genes associated with response to neoadjuvant chemoradiation in esophageal cancer. The potential of these genes as biomarkers of response to treatment warrants further investigation. Copyright © 2009 by Lippincott Williams & Wilkins.
Resumo:
INTRODUCTION In retrospective analyses of patients with nonsquamous non-small-cell lung cancer treated with pemetrexed, low thymidylate synthase (TS) expression is associated with better clinical outcomes. This phase II study explored this association prospectively at the protein and mRNA-expression level. METHODS Treatment-naive patients with nonsquamous non-small-cell lung cancer (stage IIIB/IV) had four cycles of first-line chemotherapy with pemetrexed/cisplatin. Nonprogressing patients continued on pemetrexed maintenance until progression or maximum tolerability. TS expression (nucleus/cytoplasm/total) was assessed in diagnostic tissue samples by immunohistochemistry (IHC; H-scores), and quantitative reverse-transcriptase polymerase chain reaction. Cox regression was used to assess the association between H-scores and progression-free/overall survival (PFS/OS) distribution estimated by the Kaplan-Meier method. Maximal χ analysis identified optimal cutpoints between low TS- and high TS-expression groups, yielding maximal associations with PFS/OS. RESULTS The study enrolled 70 patients; of these 43 (61.4%) started maintenance treatment. In 60 patients with valid H-scores, median (m) PFS was 5.5 (95% confidence interval [CI], 3.9-6.9) months, mOS was 9.6 (95% CI, 7.3-15.7) months. Higher nuclear TS expression was significantly associated with shorter PFS and OS (primary analysis IHC, PFS: p < 0.0001; hazard ratio per 1-unit increase: 1.015; 95%CI, 1.008-1.021). At the optimal cutpoint of nuclear H-score (70), mPFS in the low TS- versus high TS-expression groups was 7.1 (5.7-8.3) versus 2.6 (1.3-4.1) months (p = 0.0015; hazard ratio = 0.28; 95%CI, 0.16-0.52; n = 40/20). Trends were similar for cytoplasm H-scores, quantitative reverse-transcriptase polymerase chain reaction and other clinical endpoints (OS, response, and disease control). CONCLUSIONS The primary endpoint was met; low TS expression was associated with longer PFS. Further randomized studies are needed to explore nuclear TS IHC expression as a potential biomarker of clinical outcomes for pemetrexed treatment in larger patient cohorts. © 2013 by the International Association for the Study of Lung Cancer.
Resumo:
Experimental evidence suggests that somatostatin analogues may have a role to play in the management of lung tumours. We evaluated membrane preparations of nine small cell lung cancer (SCLC) cell lines and of tumour samples from 3 patients with non-small cell lung cancer (NSCLC), 1 patient with an atypical carcinoid and another with a bronchial carcinoid for the presence of specific binding sites for RC-160, a potent growth inhibitory octapeptide analogue of somatostatin. Specific binding was noted on six of nine SCLC lines. Radio-receptor assay on the cell line NCI H 69 showed evidence of two specific binding sites for RC-160, one with high affinity and the other with low affinity. Binding sites were also found on all five tumour samples. Scatchard analysis indicated the presence of a single class of receptors with high affinity in each case. Histological assessment of the resected specimens before binding assay showed them to be comprised of tumour cells and necrotic tissue, stroma and/or inflammatory cells. Therefore, the specific binding of RC-160 may be to tissues other than the tumour cells. In 3 patients, from whom the tumour samples were obtained, radiolabelled somatostatin analogue scintigraphy using [111In] pentetreotide was performed prior to surgery. In all cases, the radiolabel localised the disease. This study demonstrates the presence of specific binding sites for RC-160 in SCLC. Furthermore, the detection of specific binding in vitro and in vivo in NSCLC and intrapulmonary carcinoids demonstrates that these tumours contain cells which express specific binding sites for somatostatin. These results suggest that RC-160 may have a role toplay as a therapeutic agent in lung cancer.
Resumo:
Background: Findings from the phase 3 First-Line ErbituX in lung cancer (FLEX) study showed that the addition of cetuximab to first-line chemotherapy significantly improved overall survival compared with chemotherapy alone (hazard ratio [HR] 0·871, 95% CI 0·762-0·996; p=0·044) in patients with advanced non-small-cell lung cancer (NSCLC). To define patients benefiting most from cetuximab, we studied the association of tumour EGFR expression level with clinical outcome in FLEX study patients. Methods: We used prospectively collected tumour EGFR expression data to generate an immunohistochemistry score for FLEX study patients on a continuous scale of 0-300. We used response data to select an outcome-based discriminatory threshold immunohistochemistry score for EGFR expression of 200. Treatment outcome was analysed in patients with low (immunohistochemistry score <200) and high (≥200) tumour EGFR expression. The primary endpoint in the FLEX study was overall survival. We analysed patients from the FLEX intention-to-treat (ITT) population. The FLEX study is registered with ClinicalTrials.gov, number NCT00148798. Findings: Tumour EGFR immunohistochemistry data were available for 1121 of 1125 (99·6%) patients from the FLEX study ITT population. High EGFR expression was scored for 345 (31%) evaluable patients and low for 776 (69%) patients. For patients in the high EGFR expression group, overall survival was longer in the chemotherapy plus cetuximab group than in the chemotherapy alone group (median 12·0 months [95% CI 10·2-15·2] vs 9·6 months [7·6-10·6]; HR 0·73, 0·58-0·93; p=0·011), with no meaningful increase in side-effects. We recorded no corresponding survival benefit for patients in the low EGFR expression group (median 9·8 months [8·9-12·2] vs 10·3 months [9·2-11·5]; HR 0·99, 0·84-1·16; p=0·88). A treatment interaction test assessing the difference in the HRs for overall survival between the EGFR expression groups suggested a predictive value for EGFR expression (p=0·044). Interpretation: High EGFR expression is a tumour biomarker that can predict survival benefit from the addition of cetuximab to first-line chemotherapy in patients with advanced NSCLC. Assessment of EGFR expression could offer a personalised treatment approach in this setting. Funding: Merck KGaA. © 2012 Elsevier Ltd.