226 resultados para Vertical Integration
Resumo:
Digital technology offers enormous benefits (economic, quality of design and efficiency in use) if adopted to implement integrated ways of representing the physical world in a digital form. When applied across the full extent of the built and natural world, it is referred to as the Digital Built Environment (DBE) and encompasses a wide range of approaches and technology initiatives, all aimed at the same end goal: the development of a virtual world that sufficiently mirrors the real world to form the basis for the smart cities of the present and future, enable efficient infrastructure design and programmed maintenance, and create a new foundation for economic growth and social well-being through evidence-based analysis. The creation of a National Data Policy for the DBE will facilitate the creation of additional high technology industries in Australia; provide Governments, industries and citizens with greater knowledge of the environments they occupy and plan; and offer citizen-driven innovations for the future. Australia has slipped behind other nations in the adoption and execution of Building Information Modelling (BIM) and the principal concern is that the gap is widening. Data driven innovation added $67 billion to the Australian economy in 20131. Strong open data policy equates to $16 billion in new value2. Australian Government initiatives such as the Digital Earth inspired “National Map” offer a platform and pathway to embrace the concept of a “BIM Globe”, while also leveraging unprecedented growth in open source / open data collaboration. Australia must address the challenges by learning from international experiences—most notably the UK and NZ—and mandate the use of BIM across Government, extending the Framework for Spatial Data Foundation to include the Built Environment as a theme and engaging collaboration through a “BIM globe” metaphor. This proposed DBE strategy will modernise the Australian urban planning and the construction industry. It will change the way we develop our cities by fundamentally altering the dynamics and behaviours of the supply chains and unlocking new and more efficient ways of collaborating at all stages of the project life-cycle. There are currently two major modelling approaches that contribute to the challenge of delivering the DBE. Though these collectively encompass many (often competing) approaches or proprietary software systems, all can be categorised as either: a spatial modelling approach, where the focus is generally on representing the elements that make up the world within their geographic context; and a construction modelling approach, where the focus is on models that support the life cycle management of the built environment. These two approaches have tended to evolve independently, addressing two broad industry sectors: the one concerned with understanding and managing global and regional aspects of the world that we inhabit, including disciplines concerned with climate, earth sciences, land ownership, urban and regional planning and infrastructure management; the other is concerned with planning, design, construction and operation of built facilities and includes architectural and engineering design, product manufacturing, construction, facility management and related disciplines (a process/technology commonly known as Building Information Modelling, BIM). The spatial industries have a strong voice in the development of public policy in Australia, while the construction sector, which in 2014 accounted for around 8.5% of Australia’s GDP3, has no single voice and because of its diversity, is struggling to adapt to and take advantage of the opportunity presented by these digital technologies. The experience in the UK over the past few years has demonstrated that government leadership is very effective in stimulating industry adoption of digital technologies by, on the one hand, mandating the use of BIM on public procurement projects while at the same time, providing comparatively modest funding to address the common issues that confront the industry in adopting that way of working across the supply chain. The reported result has been savings of £840m in construction costs in 2013/14 according to UK Cabinet Office figures4. There is worldwide recognition of the value of bringing these two modelling technologies together. Australia has the expertise to exercise leadership in this work, but it requires a commitment by government to recognise the importance of BIM as a companion methodology to the spatial technologies so that these two disciplinary domains can cooperate in the development of data policies and information exchange standards to smooth out common workflows. buildingSMART Australasia, SIBA and their academic partners have initiated this dialogue in Australia and wish to work collaboratively, with government support and leadership, to explore the opportunities open to us as we develop an Australasian Digital Built Environment. As part of that programme, we must develop and implement a strategy to accelerate the adoption of BIM processes across the Australian construction sector while at the same time, developing an integrated approach in concert with the spatial sector that will position Australia at the forefront of international best practice in this area. Australia and New Zealand cannot afford to be on the back foot as we face the challenges of rapid urbanisation and change in the global environment. Although we can identify some exemplary initiatives in this area, particularly in New Zealand in response to the need for more resilient urban development in the face of earthquake threats, there is still much that needs to be done. We are well situated in the Asian region to take a lead in this challenge, but we are at imminent risk of losing the initiative if we do not take action now. Strategic collaboration between Governments, Industry and Academia will create new jobs and wealth, with the potential, for example, to save around 20% on the delivery costs of new built assets, based on recent UK estimates.
Resumo:
Decades of research has shown that the uptake of workplace ‘flexibility’ provisions set out in organizational/HR policies rests heavily on the support of line managers. However, the majority of scholarship addressing the intersection of managers’ roles and work-life integration has been employee-centred. That is, the literature primarily situates managers as gatekeepers to the effective implementation of work and family policies as they affect employees or workers, examining their role in, for example, approving requests to adjust or personalise employees’ work schedules; influencing whether employees are cross-trained to undertake the work of others during absences; publicising available policies; and creating norms supporting the use of formal provisions (Ryan & Ernst Kossek, 2008). Managers’ actions are primarily seen as key, contingent phenomena affecting the adoption and diffusion of work-life initiatives in an organization; consequently impacting on the work-life outcomes of subordinate employees (Bardoel, 2003; Gregory & Milner, 2012).
Resumo:
为研究风电并网对互联系统低频振荡的影响,基于完整的双馈风电机组模型,定性分析了两区域互联系统在风电机组并网前后阻尼特性的变化情况.从双馈风电机组并网输送距离、并网容量、互联系统联络线传送功率、是否加装电力系统稳定器等多个方面,多角度分析了风电场并网对互联系统小干扰稳定及低频振荡特性的影响.之后,以两个包括两个区域的电力系统为例,进行了系统的计算分析和比较.结果表明,有双馈风电机组接入的互联电力系统,在不同运行模式下,双馈风电机组的并网输送距离、出力水平、联络线传送功率对低频振荡模式的影响在趋势和程度上均有显著差异,这样在对风电场进行入网规划、设计和运行时就需要综合考虑这些因素的影响.
Resumo:
Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.
Resumo:
Bioscience content within undergraduate nursing degrees provides foundational knowledge of pathophysiology, anatomy, physiology, microbiology and pharmacology. However, nursing students often find studying the bioscience components of undergraduate nursing program daunting (Friedel & Treagust 2005, Craft et al. 2013). This is related to factors such as the volume of content, degree of difficulty and insufficient linkage between bioscience concepts and nurses' clinical practice. Students who are unable to conceptualise the relevance of bioscience with nursing subjects and subsequent nursing practice may not appreciate the broader importance of bioscience, and hence may adopt a surface approach to learning (Craft et al. 2013). The aim of this study was to develop a model within Nursing Practice in the Context theory subject, to include a bioscientist lecturing to complement the nursing lecturer, in order to explicitly demonstrate links between physiology, pathophysiology and nursing practice.
Resumo:
It could be argued that advancing practice in critical care has been superseded by the advanced practice agenda. Some would suggest that advancing practice is focused on the core attributes of an individuals practice progressing onto advanced practice status. However, advancing practice is more of a process than identifiable skills and as such is often negated when viewing the development of practitioners to the advanced practice level. For example practice development initiatives can be seen as advancing practice for the masses which ensures that practitioners are following the same level of practice. The question here is; are they developing individually.
Resumo:
It could be argued that advancing practice in critical care has been superseded by the advanced practice agenda. Some would suggest that advancing practice is focused on the core attributes of an individuals practice progressing onto advanced practice status. However, advancing practice is more of a process than identifiable skills and as such is often negated when viewing the development of practitioners to the advanced practice level. For example practice development initiatives can be seen as advancing practice for the masses which ensures that practitioners are following the same level of practice. The question here is; are they developing individually. To discuss the potential development of a conceptual model of knowledge integration pertinent to critical care nursing practice. In an attempt to explore the development of leading edge critical care thinking and practice, a new model for advancing practice in critical care is proposed. This paper suggests that reflection may not be the best model for advancing practice unless the individual practitioner has a sound knowledge base both theoretically and experientially. Drawing on the contemporary literature and recent doctoral research, the knowledge integration model presented here uses multiple learning strategies that are focused in practise to develop practice, for example the use of work-based learning and clinical supervision. Ongoing knowledge acquisition and its relationship with previously held theory and experience will enable individual practitioners to advance their own practice as well as being a resource for others.
Resumo:
Explore and describe a conceptual model of knowledge integration pertinent to the development of individual practitioners in critical care. Discussion of how multiple learning strategies that are embedded in practice can be beneficial in developing knowledge.
Resumo:
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric disorder that has a major impact on the ability to function effectively in daily life. PTSD may develop as a response to exposure to an event or events perceived as potentially harmful or life-threatening. It has high prevalence rates in the community, especially among vulnerable groups such as military personnel or those in emergency services. Despite extensive research in this field, the underlying mechanisms of the disorder remain largely unknown. The identification of risk factors for PTSD has posed a particular challenge as there can be delays in onset of the disorder, and most people who are exposed to traumatic events will not meet diagnostic criteria for PTSD. With the advent of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V), the classification for PTSD has changed from an anxiety disorder into the category of stress- and trauma-related disorders. This has the potential to refocus PTSD research on the nature of stress and the stress response relationship. This review focuses on some of the important findings from psychological and biological research based on early models of stress and resilience. Improving our understanding of PTSD by investigating both genetic and psychological risk and coping factors that influence stress response, as well as their interaction, may provide a basis for more effective and earlier intervention.
Resumo:
This research examined the implementation of clinical information system technology in a large Saudi Arabian health care organisation. The research was underpinned by symbolic interactionism and grounded theory methods informed data collection and analysis. Observations, a review of policy documents and 38 interviews with registered nurses produced in-depth data. Analysis generated three abstracted concepts that explained how imported technology increased practice and health care complexity rather than enhance quality patient care. The core category, Disseminating Change, also depicted a hierarchical and patriarchal culture that shaped the implementation process at the levels of government, organisation and the individual.
Resumo:
In recent years more and more complex humanoid robots have been developed. On the other hand programming these systems has become more difficult. There is a clear need for such robots to be able to adapt and perform certain tasks autonomously, or even learn by themselves how to act. An important issue to tackle is the closing of the sensorimotor loop. Especially when talking about humanoids the tight integration of perception with actions will allow for improved behaviours, embedding adaptation on the lower-level of the system.
Resumo:
Salinity gradient power is proposed as a source of renewable energy when two solutions of different salinity are mixed. In particular, Pressure Retarded Osmosis (PRO) coupled with a Reverse Osmosis process (RO) has been previously suggested for power generation, using RO brine as the draw solution. However, integration of PRO with RO may have further value for increasing the extent of water recovery in a desalination process. Consequently, this study was designed to model the impact of various system parameters to better understand how to design and operate practical PRO-RO units. The impact of feed salinity and recovery rate for the RO process on the concentration of draw solution, feed pressure, and membrane area of the PRO process was evaluated. The PRO system was designed to operate at maximum power density of . Model results showed that the PRO power density generated intensified with increasing seawater salinity and RO recovery rate. For an RO process operating at 52% recovery rate and 35 g/L feed salinity, a maximum power density of 24 W/m2 was achieved using 4.5 M NaCl draw solution. When seawater salinity increased to 45 g/L and the RO recovery rate was 46%, the PRO power density increased to 28 W/m2 using 5 M NaCl draw solution. The PRO system was able to increase the recovery rate of the RO by up to 18% depending on seawater salinity and RO recovery rate. This result suggested a potential advantage of coupling PRO process with RO system to increase the recovery rate of the desalination process and reduce brine discharge.
Resumo:
Self-tracking, the process of recording one's own behaviours, thoughts and feelings, is a popular approach to enhance one's self-knowledge. While dedicated self-tracking apps and devices support data collection, previous research highlights that the integration of data constitutes a barrier for users. In this study we investigated how members of the Quantified Self movement---early adopters of self-tracking tools---overcome these barriers. We conducted a qualitative analysis of 51 videos of Quantified Self presentations to explore intentions for collecting data, methods for integrating and representing data, and how intentions and methods shaped reflection. The findings highlight two different intentions---striving for self-improvement and curiosity in personal data---which shaped how these users integrated data, i.e. the effort required. Furthermore, we identified three methods for representing data---binary, structured and abstract---which influenced reflection. Binary representations supported reflection-in-action, whereas structured and abstract representations supported iterative processes of data collection, integration and reflection. For people tracking out of curiosity, this iterative engagement with personal data often became an end in itself, rather than a means to achieve a goal. We discuss how these findings contribute to our current understanding of self-tracking amongst Quantified Self members and beyond, and we conclude with directions for future work to support self-trackers with their aspirations.
Resumo:
This commentary was stimulated by Yeping Li's first editorial (2014) citing one of the journal's goals as adding multidisciplinary perspectives to current studies of single disciplines comprising the focus of other journals. In this commentary I argue for a greater focus on STEM integration, with a more equitable representation of the four disciplines in studies purporting to advance STEM learning. The STEM acronym is often used in reference to just one of the disciplines, commonly science. Although the integration of STEM disciplines is increasingly advocated in the literature, studies that address multiple disciplines appear scant with mixed findings and inadequate directions for STEM advancement. Perspectives on how discipline integration can be achieved are varied, with reference to multidisciplinary, interdisciplinary, and transdisciplinary approaches adding to the debates. Such approaches include core concepts and skills being taught separately in each discipline but housed within a common theme; the introduction of closely linked concepts and skills from two or more disciplines with the aim of deepening understanding and skills; and the adoption of a transdisciplinary approach, where knowledge and skills from two or more disciplines are applied to real-world problems and projects with the aim of shaping the total learning experience. Research that targets STEM integration is an embryonic field with respect to advancing curriculum development and various student outcomes. For example, we still need more studies on how student learning outcomes arise not only from different forms of STEM integration but also from the particular disciplines that are being integrated. As noted in this commentary, it seems that mathematics learning benefits less than the other disciplines in programs claiming to focus on STEM integration. Factors contributing to this finding warrant more scrutiny. Likewise, learning outcomes for engineering within K-12 integrated STEM programs appear under-researched. This commentary advocates a greater focus on these two disciplines within integrated STEM education research. Drawing on recommendations from the literature, suggestions are offered for addressing the challenges of integrating multiple disciplines faced by the STEM community.