216 resultados para TRANSPARENT MATERIALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of physical education curriculum in the developed world and specifically in Australia tends to be guided in principle by syllabus documents that represent, in varying degrees, some form of government education priorities. Through the use of critical discourse analysis we analyze one such syllabus example (an official syllabus document of one of the Australian States) to explore the relationships between the emancipatory/social justice expectations presented in the rubric of and introduction to the official syllabus document, and the language details of learning outcomes that indicate how the expectations might be satisfied. Given the complexity and multilevel pathways of message systems/ideologies we question the efficacy of such documents oriented around social justice principles to genuinely deliver more radical agendas which promote social change and encourage a preparedness to engage in social action leading to a betterment of society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of the work Shrinking Violets is comprised of two half scale garments in laser cut silk organza, developed with a knotting device to allow for disassembly and reassembly. The first is a jacket in layered red organza including black storm flap details. The second is a vest in jade organza with circles of pink organza attached through a pattern of knots. Research Background This practice-led fashion design research sits within the field of Design for Sustainability (DfS) in fashion that seeks to mitigate the environmental and ethical impacts of fashion consumption and production. The research explores new systems of garment construction for DfS, and examines how these systems may involve ‘designing’ new user interactions with the garments. The garments’ construction system allows them to be disassembled and recycled or reassembled by users to form a new garment. Conventional garment design follows a set process of cutting and construction, with pattern pieces permanently machine-stitched together. Garments typically contain multiple fibre types; for example a jacket may be constructed from a shell of wool/polyester, an acetate lining, fusible interlinings, and plastic buttons. These complex inputs mean that textile recycling is highly labour intensive, first to separate the garment pieces and second to sort the multiple fibre types. This difficulty results in poor quality ‘shoddy’ comprised of many fibre types and unsuitable for new apparel, or in large quantities of recyclable textile waste sent to landfill (Hawley 2011). Design-led approaches that consider the garment’s end of life in the design process are a way of addressing this problem. In Gulich’s (2006) analysis, use of single materials is the most effective way to ensure ease of recycling, with multiple materials that can be detached next in effectiveness. Given the low rate of technological innovation in most apparel manufacturing (Ruiz 2011), a challenge for effective recycling is how to develop new manufacturing methods that allow for garments to be more easily disassembled at end-of-life. Research Contribution This project addresses the research question: How can design for disassembly be considered within the fashion design process? I have employed a practice-led methodology in which my design process leads the research, making use of methods of fashion design practice including garment and construction research, fabric and colour research, textile experimentation, drape, patternmaking, and illustration as well as more recent methods such as laser cutting. Interrogating the traditional approaches to garment construction is necessarily a technical process; however fashion design is as much about the aesthetic and desirability of a garment as it is about the garment’s pragmatics or utility. This requires a balance between the technical demands of designing for disassembly with the aesthetic demands of fashion. This led to the selection of luxurious, semi-transparent fabrics in bold floral colours that could be layered to create multiple visual effects, as well as the experimentation with laser cutting for new forms of finishing and fastening the fabrics together. Shrinking Violets makes two contributions to new knowledge in the area of design for sustainability within fashion. The first is in the technical development of apparel modularity through the system of laser cut holes and knots that also become a patterning device. The second contribution lies in the design of a system for users to engage with the garment through its ability to be easily reconstructed into a new form. Research Significance Shrinking Violets was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design. References Gulich, B. (2006). Designing textile products that are easy to recycle. In Y. Wang (Ed.), Recycling in Textiles (pp. 25-37). London: Woodhead. Hawley, J. M. (2011). Textile recycling options: exploring what could be. In A. Gwilt & T. Rissanen (Eds.), Shaping Sustainable Fashion: Changing the way we make and use clothes (pp. 143 - 155). London: Earthscan. Ruiz, B. (2014). Global Apparel Manufacturing. Retrieved 10 August 2014, from http://clients1.ibisworld.com/reports/gl/industry/default.aspx?entid=470

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies for improving the photovoltaic performance of dye-sensitized solar cells (DSSCs) are proposed by modifying highly transparent and highly ordered multilayer mesoporous TiO 2 photoanodes through nitrogen-doping and top-coating with a light-scattering layer. The mesoporous TiO 2 photoanodes were fabricated by an evaporation-induced self-assembly method. In regard to the modification methods, the light-scattering layer as a top-coating was proved to be superior to nitrogen-doping in enhancing not only the power conversion efficiency but also the fill factor of DSSCs. The optimized bifunctional photoanode consisted of a 30-layer mesoporous TiO 2 thin film (4.15 μm) and a Degussa P25 light-scattering top-layer (4 μm), which gives rise to a ∼200% higher cell efficiency than for unmodified cells and a fill factor of 0.72. These advantages are attributed to its higher dye adsorption, better light scattering, and faster photon-electron transport. Such a photoanode configuration provides an efficient way to enhance the energy conversion efficiency of DSSCs.