576 resultados para Show da Fé
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.
Resumo:
The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications. This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon. Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented. A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators. Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.
Resumo:
In this paper, we propose an unsupervised segmentation approach, named "n-gram mutual information", or NGMI, which is used to segment Chinese documents into n-character words or phrases, using language statistics drawn from the Chinese Wikipedia corpus. The approach alleviates the tremendous effort that is required in preparing and maintaining the manually segmented Chinese text for training purposes, and manually maintaining ever expanding lexicons. Previously, mutual information was used to achieve automated segmentation into 2-character words. The NGMI approach extends the approach to handle longer n-character words. Experiments with heterogeneous documents from the Chinese Wikipedia collection show good results.
Resumo:
The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.
Resumo:
The aim of this paper is to show how principles of ecological psychology and dynamical systems theory can underpin a philosophy of coaching practice in a nonlinear pedagogy. Nonlinear pedagogy is based on a view of the human movement system as a nonlinear dynamical system. We demonstrate how this perspective of the human movement system can aid understanding of skill acquisition processes and underpin practice for sports coaches. We provide a description of nonlinear pedagogy followed by a consideration of some of the fundamental principles of ecological psychology and dynamical systems theory that underpin it as a coaching philosophy. We illustrate how each principle impacts on nonlinear pedagogical coaching practice, demonstrating how each principle can substantiate a framework for the coaching process.
Resumo:
Silylated layered double hydroxides (LDHs) were synthesized through a surfactant-free method involving an in situ condensation of silane with the surface hydroxyl group of LDHs during its reconstruction in carbonate solution. X-ray diffraction (XRD) patterns showed the silylation reaction occurred on the external surfaces of LDHs layers. The successful silylation was evidenced by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP/MAS NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and infrared emission spectroscopy (IES). The ribbon shaped crystallites with a rodlike aggregation were observed through transmission electron microscopy (TEM) images. The aggregation was explained by the T2 and T3 types of linkage between adjacent silane molecules as indicated in the 29Si NMR spectrum. In addition, the silylated products show high thermal stability by maintained Si related bands even when the temperature was increased to 1000 C as observed in IES spectra.
Resumo:
Construction projects can involve a diverse range of stakeholders and the success of the project depends very much on fulfilling their needs and expectations. It is important, therefore, to identify and recognize project stakeholders and develop a rigorous stakeholder management process. However, limited research has investigated the impact of stakeholders on construction projects in developing countries. A stakeholder impact analysis (SIA), based on an approach developed by Olander (2007), was adopted to investigate the stakeholders' impact on state-owned civil engineering projects in Vietnam. This involved the analysis of a questionnaire survey of 57 project managers to determine the relative importance of different stakeholders. The results show the client to have the highest level of impact on the projects, followed by project managers and the senior management of state-owned engineering firms. The SIA also provides suggestions to project managers in developing and evaluating the stakeholder management process.
Resumo:
Public private partnerships (PPP) have been widely used as a method for public infrastructure project delivery not only locally and internationally, however the adoption of PPPs in social infrastructure procurement has still been very limited. The objective of this paper is to investigate the potential of implementation of current PPP framework in social affordable housing projects in South East Queensland. Data were collected from 22 interviewees with rich experiences in the industry. The findings of this study show that affordable housing investment have been considered by the industry practitioners as a risky business in comparison to other private rental housing investment. The main determents of the adoption of PPPs in social infrastructure project are the tenant-related factors, such as the inability of paying rent and the inability of caring the property. The study also suggests the importance of seeking strategic partnership with community-based organisation that has experiences in managing similar tenants profiles. Current PPP guideline is also viewed as inappropriate for the affordable housing projects, but the principle of VFM framework and risk allocation in PPPs still be applied to the affordable housing projects. This study helps to understand the viability of PPP in social housing procurement projects, and point out the importance of developing guideline for multi-stakeholder partnership and the expansion of the current VFM and PPPs guidelines.
Resumo:
Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 M respectively. Structureactivity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.
Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker.
Resumo:
BACKGROUND: Although we know much about the molecular makeup of the sinus node (SN) in small mammals, little is known about it in humans. The aims of the present study were to investigate the expression of ion channels in the human SN and to use the data to predict electrical activity. METHODS AND RESULTS: Quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence were used to analyze 6 human tissue samples. Messenger RNA (mRNA) for 120 ion channels (and some related proteins) was measured in the SN, a novel paranodal area, and the right atrium (RA). The results showed, for example, that in the SN compared with the RA, there was a lower expression of Na(v)1.5, K(v)4.3, K(v)1.5, ERG, K(ir)2.1, K(ir)6.2, RyR2, SERCA2a, Cx40, and Cx43 mRNAs but a higher expression of Ca(v)1.3, Ca(v)3.1, HCN1, and HCN4 mRNAs. The expression pattern of many ion channels in the paranodal area was intermediate between that of the SN and RA; however, compared with the SN and RA, the paranodal area showed greater expression of K(v)4.2, K(ir)6.1, TASK1, SK2, and MiRP2. Expression of ion channel proteins was in agreement with expression of the corresponding mRNAs. The levels of mRNA in the SN, as a percentage of those in the RA, were used to estimate conductances of key ionic currents as a percentage of those in a mathematical model of human atrial action potential. The resulting SN model successfully produced pacemaking. CONCLUSIONS: Ion channels show a complex and heterogeneous pattern of expression in the SN, paranodal area, and RA in humans, and the expression pattern is appropriate to explain pacemaking.
Resumo:
In recent years, cities show increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning human needs are supplied while natural resources are used in the most effective and sustainable manner. And the maintenance of ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, the paper briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, the paper defines the conceptual framework of a new method for developing sustainable urban ecosystems through ecological planning approach. In the future of the research, this model will be developed as a guideline for the assessment of the ecological sustainability in built environments.
Resumo:
Suggestions that peripheral imagery may affect the development of refractive error have led to interest in the variation in refraction and aberration across the visual field. It is shown that, if the optical system of the eye is rotationally symmetric about an optical axis which does not coincide with the visual axis, measurements of refraction and aberration made along the horizontal and vertical meridians of the visual field will show asymmetry about the visual axis. The departures from symmetry are modelled for second-order aberrations, refractive components and third-order coma. These theoretical results are compared with practical measurements from the literature. The experimental data support the concept that departures from symmetry about the visual axis in the measurements of crossed-cylinder astigmatism J45 and J180 are largely explicable in terms of a decentred optical axis. Measurements of the mean sphere M suggest, however, that the retinal curvature must differ in the horizontal and vertical meridians.
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the If-then rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the re-sampling of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.