318 resultados para Shifting cultivation.
Resumo:
Despite the dominancy of medical explanations for difficult child behavior, the shifting sands that lie beneath the ADHD construct provide an unstable foundation for educational practice. It can be somewhat liberating to remember that “attention deficit hyperactivity disorder” is a label (one of many, including minimal brain damage and hyperkinetic reaction of childhood) that the medical domain has coined to both group and describe certain challenging behaviors exhibited by children and young people (see Smith, Chapter 2). The label is but one conceptualization of what these behaviors mean and, despite the existence of powerful lobby groups, it may not be the best way forward. In what follows, I present an alternative typology to the medical conceptualization by describing some common issues that bring this group of children to attention. In an effort to introduce educationally useful responses to students who are difficult to teach, I will then outline what classroom teachers need to recognize in order to work with these students and realize their potential. To assist teachers in thinking pedagogically, these observations are coupled with well-known and relevant qualities of good teaching to remind teachers of what they already know and to reacquaint them with the power of that knowledge.
Resumo:
The aim of this article is to explore whether patient empowerment flourishes in the wake of current health reforms or if there is a power struggle between nursing and medicine as to what is in the patients' best interest. Shifting the balance of power from healthcare professionals to patients has become a key element of healthcare policy in England. The RCN's definition of nursing places patient empowerment as a central remit of nurses. However, achieving genuine patient empowerment is not easy and requires individuals and organizations to alter their beliefs, values and behaviours. To empower patients nurses must be in a position to share power and this may require a realignment of the traditional power base within health care. Although empowerment is often viewed on a one-to-one level between professionals and patients, for true patient empowerment to occur, issues of power and control must also be addressed at a national and political level.
Resumo:
In this essay, we outline an emerging form of public intellectualism in the humanities sector of Australian higher education. We argue that debates over public intellectualism and its relation to the academy in Australia have largely been focused on the tension between polemics and politics. These debates have also tended to ignore or overlook policy drivers within the sector and alternative or new media sites of public intellectualism. Shifting the focus towards policy drivers in the knowledge economy—such as knowledge transfer and third-stream funding—and understanding the nature of the university as a public sphere in itself reveals a new economy of the public intellectual as a professional knowledge worker. This new economy, we argue, may well render obsolete many of the previous debates over public intellectualism in the humanities. However, we anticipate that it will generate new debates over the relationship between the individual and the institutional, and between the concepts of public profile and public role—debates that will affect, in particular, early career academics who are the inheritors of this new economy of the public intellectual.
Resumo:
This paper is interested in the way in which the heritage of another place, time, and culture is repurposed for popular consumption in an experience economy, as well as the way in which the visitors experience their own past and the past of others. We trace the processes of engagement, education and nostalgia that occur when the European heritage is presented in a postcolonial context and an Australian environment. The information presented includes the results of qualitative and quantitative research conducted at the Abbey Museum over the December-Jan. period of 2012-13.
Resumo:
A salient but rarely explicitly studied characteristic of interfirm relationships is that they can intentionally be formed for finite periods of time. What determines firms' intertemporal choices between different alliance time horizons? Shadow of the future theorists suggest that when an alliance has an explicitly set short-term time frame, there is an increased risk that partners may behave opportunistically. This does not readily explain the high incidence of time-bound alliances being formed. Reconciling insights from the shadow of the future perspective with nascent research on the flexibility of temporary organizations, and shifting the focus from the level of individual transactions to that of strategic alliance portfolios, we argue that firms may be willing to accept a higher risk of opportunism when there are offsetting gains in strategic flexibility in managing their strategic alliance portfolio. Consequently, we hypothesize that environmental factors that increase the need for strategic flexibility—namely, dynamism and complexity in the environment—are likely to increase the relative share of time-bound alliances in strategic alliance portfolios. Our analysis of longitudinal data on the intertemporal alliance choices of a large sample of small and medium-sized enterprises provides support for this argument. Our findings fill an important gap in theory about time horizons in interfirm relationships and temporary organizations and show the importance of separating planned terminations from duration-based performance measures.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Multiple copies of expression cassettes driven by the Trichoderma reesei xylanase 2 (xyn2) and cellobiohydrolase 2 (cbh2) promoters were introduced into the recombinant T. reesei EC-21 generated to express a thermostable Dictyoglomus thermophilum xylanase (XynB) under the egl2 promoter for further improvement of the enzyme yield. The transformants were screened based on increased XynB activity only. Multiple promoter transformant MPP-4 expressing the xynB gene under all the three promoters was found to be the highest producer of XynB, giving a 65% increase in yield compared to the parental single-promoter recombinant EC-21. The multiple-promoter transformant strains harboured six to nine copies of the xynB gene. Amongst the three promoters, egl2 seemed to have the strongest effect on XynB expression. The shotgun approach we used proved to be effective for rapid enhancement of protein expression using three promoters active at the near-neutral pH of the cultivation medium.
Resumo:
Research shows that approximately half of creative practitioners operate as embedded creatives by securing gainful employment within organisations located in the field beyond their core discipline. This foregrounds the significance of having the skills necessary to successfully cross the disciplinary boundaries in order to negotiate a professional role. The multiple implications of such reframing for emerging creative practitioners who navigate uncertain professional boundaries include developing a skill of identifying and successfully targeting the shifting professional and industry coordinates while remaining responsive to changes. A further implication involves creative practitioners engaging in a continuous cycle of re-negotiation of their professional identity making the management of multiple professional selves - along with creating and recreating a meaningful frame of references such as the language around their emerging practice - a necessary skill. This chapter presents a case study of a set of Work Integrated Learning subjects designed to develop in creative industries practitioners the skills to manage their emerging professional identities in response to the shifts in the professional world.
Resumo:
"Combining facets of health physics with medicine, An Introduction to Radiation Protection in Medicine covers the background of the subject and the medical situations where radiation is the tool to diagnose or treat human disease. Encouraging newcomers to the field to properly and efficiently function in a versatile and evolving work setting, it familiarizes them with the particular problems faced during the application of ionizing radiation in medicine. The text builds a fundamental knowledge base before providing practical descriptions of radiation safety in medicine. It covers basic issues related to radiation protection, including the physical science behind radiation protection and the radiobiological basis of radiation protection. The text also presents operational and managerial tools for organizing radiation safety in a medical workplace. Subsequent chapters form the core of the book, focusing on the practice of radiation protection in different medical disciplines. They explore a range of individual uses of ionizing radiation in various branches of medicine, including radiology, nuclear medicine, external beam radiotherapy, and brachytherapy. With contributions from experienced practicing physicists, this book provides essential information about dealing with radiation safety in the rapidly shifting and diverse environment of medicine."--publisher website
Resumo:
The effect of a change of tillage and crop residue management practice on the chemical and micro-biological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.
Resumo:
This thesis delivers new knowledge about how Australian community arts practices of appropriate technology are shifting due to the internet. It reconfigures the sector's incumbent ethics of sustainability in response to emerging concerns about how the internet's material politics are affecting cultural participation.
Resumo:
Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV–vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein–Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.