223 resultados para Reward based model
Resumo:
There is strong current interest in the use of biodegradable scaffolds in combination with bone growth factors as a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a preclinical ovine thoracic spine. The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post surgery.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
Influenza is associated with substantial disease burden [ 1]. Development of a climate-based early warning system for in fluenza epidemics has been recommended given the signi fi - cant association between climate variability and influenza activity [2]. Brisbane is a subtropical city in Australia and offers free in fluenza vaccines to residents aged ≥65 years considering their high risks in developing life-threatening complications, especially for in fluenza A predominant seasons. Hong Kong is an international subtropical city in Eastern Asia and plays a crucial role in global infectious diseases transmission dynamics via the international air transportation network [3, 4]. We hypothesized that Hong Kong in fluenza surveillance data could provide a signal for in fluenza epidemics in Brisbane [ 4]. This study aims to develop an epidemic forecasting model for influenza A in Brisbane elders, by combining climate variability and Hong Kong in fluenza A surveillance data. Weekly numbers of laboratoryconfirmed influenza A positive isolates for people aged ≥65 years from 2004 to 2009 were obtained for Brisbane from Queensland Health, Australia, and for Hong Kong from Queen Mary Hospital (QMH). QMH is the largest public hospital located in Hong Kong Island, and in fluenza surveillance data from this hospital have been demonstrated to be representative for influenza circulation in the entirety of Hong Kong [ 5]. The Brisbane in fluenza A epidemics occurred during July –September, whereas the Hong Kong in fluenza A epidemics occurred during February –March and May –August.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.
Resumo:
Aims: To establish a model to measure bidirectional flow of water from a glucose oral rehydration solution (G-ORS) and a newly developed rice-based oral rehydration solution (R-ORS) using a dual isotope tracer technique in a rat perfusion model. To measure net water, sodium and potassium absorption from the ORS. Methods: In viva steady-state perfusion studies were carried out in normal and secreting (induced by cholera toxin) rat small intestine (n = 11 in each group). To determine bidirectional flow of water from the ORS the animals were initially labelled with tritium, and deuterium was added to the perfusion solution. Sequential perfusate and blood samples were collected after attainment of steady-state conditions and analysed for water and electrolyte content. Results: There was a significant increase in net water absorption from the R-ORS compared to the G-ORS in both the normal (P < 0.02) and secreting intestine (P < 0.05). Water efflux was significantly reduced in the R-ORS group compared to the G-ORS group in both the normal (P < 0.01) and the secreting intestine (P < 0.01). There was an increase in sodium absorption in the R-ORS group compared to the G-ORS. The G-ORS produced a significantly greater blood glucose level at 75 min compared to the R-ORS (P < 0.03) in the secreting intestine. Conclusions: This study demonstrates the improved water absorption from a rice-based ORS in both the normal and secreting intestine. Evidence that the absorption of water may be influenced by the osmolality of the ORS was also demonstrated.
Resumo:
Background Different from other indicators of cardiac function, such as ejection fraction and transmitral early diastolic velocity, myocardial strain is promising to capture subtle alterations that result from early diseases of the myocardium. In order to extract the left ventricle (LV) myocardial strain and strain rate from cardiac cine-MRI, a modified hierarchical transformation model was proposed. Methods A hierarchical transformation model including the global and local LV deformations was employed to analyze the strain and strain rate of the left ventricle by cine-MRI image registration. The endocardial and epicardial contour information was introduced to enhance the registration accuracy by combining the original hierarchical algorithm with an Iterative Closest Points using Invariant Features algorithm. The hierarchical model was validated by a normal volunteer first and then applied to two clinical cases (i.e., the normal volunteer and a diabetic patient) to evaluate their respective function. Results Based on the two clinical cases, by comparing the displacement fields of two selected landmarks in the normal volunteer, the proposed method showed a better performance than the original or unmodified model. Meanwhile, the comparison of the radial strain between the volunteer and patient demonstrated their apparent functional difference. Conclusions The present method could be used to estimate the LV myocardial strain and strain rate during a cardiac cycle and thus to quantify the analysis of the LV motion function.
Resumo:
This paper provides a first look at the acceptance of Accountable-eHealth (AeH) systems–a new genre of eHealth systems designed to manage information privacy concerns that hinder the proliferation of eHealth. The underlying concept of AeH systems is appropriate use of information through after-the-fact accountability for intentional misuse of information by healthcare professionals. An online questionnaire survey was utilised for data collection from three educational institutions in Queensland, Australia. A total of 23 hypotheses relating to 9 constructs were tested using a structural equation modelling technique. The moderation effects on the hypotheses were also tested based on six moderation factors to understand their role on the designed research model. A total of 334 valid responses were received. The cohort consisted of medical, nursing and other health related students studying at various levels in both undergraduate and postgraduate courses. Hypothesis testing provided sufficient data to accept 7 hypotheses. The empirical research model developed was capable of predicting 47.3% of healthcare professionals’ perceived intention to use AeH systems. All six moderation factors showed significant influence on the research model. A validation of this model with a wider survey cohort is recommended as a future study.
Resumo:
Reputation systems are employed to measure the quality of items on the Web. Incorporating accurate reputation scores in recommender systems is useful to provide more accurate recommendations as recommenders are agnostic to reputation. The ratings aggregation process is a vital component of a reputation system. Reputation models available do not consider statistical data in the rating aggregation process. This limitation can reduce the accuracy of generated reputation scores. In this paper, we propose a new reputation model that considers previously ignored statistical data. We compare our proposed model against state-of the-art models using top-N recommender system experiment.
Resumo:
This thesis introduced two novel reputation models to generate accurate item reputation scores using ratings data and the statistics of the dataset. It also presented an innovative method that incorporates reputation awareness in recommender systems by employing voting system methods to produce more accurate top-N item recommendations. Additionally, this thesis introduced a personalisation method for generating reputation scores based on users' interests, where a single item can have different reputation scores for different users. The personalised reputation scores are then used in the proposed reputation-aware recommender systems to enhance the recommendation quality.