371 resultados para Parameter Identification
Resumo:
A high performance liquid chromatographic method for the simultaneous analysis of two flavonoids (iso-vitexin and vitexin), and three indole alkaloids (harmane, harmine, and harmol) was developed. This method was then utilised to quantitate levels of these five constituents in methanolic extracts of Australian Passiflora incarnata. HPLC analysis was performed using a Waters™ Novapak C18 (150 × 4 mm, 4 μm) column, with a gradient solvent system of methanol-water-acetic acid. Detection was achieved by PDA UV (254 nm) and fluorescence (excitation 254 nm, emission 414 nm), utilising the external standard method to obtain quantification.
Resumo:
Objective To determine changes in ability to identify specific vegetables and fruits, and attitudes towards vegetables and fruit, associated with the introduction of a school-based food garden. Design A 12-month intervention trial using a historical control (control n 132, intervention n 120), class-based, self-administered questionnaires requiring one-word answers and 3-point Likert scale responses. Setting A state primary school (grades 4 to 7) in a low socio-economic area of Brisbane, Australia. Intervention The introduction of a school-based food garden, including the funding of a teacher coordinator for 11 h/week to facilitate integration of garden activities into the curriculum. Main outcome measures Ability to identify a series of vegetables and fruits, attitudes towards vegetables and fruit. Analysis Frequency distributions for each item were generated and χ2 analyses were used to determine statistical significance. Exploratory factor analysis was employed to detect major trends in data. Results The intervention led to enhanced ability to identify individual vegetables and fruits, greater attention to origins of produce (garden-grown and fresh), changes to perceived consumption of vegetables and fruits, and enhanced confidence in preparing fruit and vegetable snacks, but decreased interest in trying new fruits. Conclusions The introduction of this school-based food garden was associated with skill and attitudinal changes conducive to enhancing vegetable and fruit consumption. The ways in which such changes might impact on dietary behaviours and intake require further analysis.
Resumo:
This research has successfully applied super-resolution and multiple modality fusion techniques to address the major challenges of human identification at a distance using face and iris. The outcome of the research is useful for security applications.
Resumo:
Aerosol mass spectrometers (AMS) are powerful tools in the analysis of the chemical composition of airborne particles, particularly organic aerosols which are gaining increasing attention. However, the advantages of AMS in providing on-line data can be outweighed by the difficulties involved in its use in field measurements at multiple sites. In contrast to the on-line measurement by AMS, a method which involves sample collection on filters followed by subsequent analysis by AMS could significantly broaden the scope of AMS application. We report the application of such an approach to field studies at multiple sites. An AMS was deployed at 5 urban schools to determine the sources of the organic aerosols at the schools directly. PM1 aerosols were also collected on filters at these and 20 other urban schools. The filters were extracted with water and the extract run through a nebulizer to generate the aerosols, which were analysed by an AMS. The mass spectra from the samples collected on filters at the 5 schools were found to have excellent correlations with those obtained directly by AMS, with r2 ranging from 0.89 to 0.98. Filter recoveries varied between the schools from 40 -115%, possibly indicating that this method provides qualitative rather than quantitative information. The stability of the organic aerosols on Teflon filters was demonstrated by analysing samples stored for up to two years. Application of the procedure to the remaining 20 schools showed that secondary organic aerosols were the main source of aerosols at the majority of the schools. Overall, this procedure provides accurate representation of the mass spectra of ambient organic aerosols and could facilitate rapid data acquisition at multiple sites where AMS could not be deployed for logistical reasons.
Resumo:
After first observing a person, the task of person re-identification involves recognising an individual at different locations across a network of cameras at a later time. Traditionally, this task has been performed by first extracting appearance features of an individual and then matching these features to the previous observation. However, identifying an individual based solely on appearance can be ambiguous, particularly when people wear similar clothing (i.e. people dressed in uniforms in sporting and school settings). This task is made more difficult when the resolution of the input image is small as is typically the case in multi-camera networks. To circumvent these issues, we need to use other contextual cues. In this paper, we use "group" information as our contextual feature to aid in the re-identification of a person, which is heavily motivated by the fact that people generally move together as a collective group. To encode group context, we learn a linear mapping function to assign each person to a "role" or position within the group structure. We then combine the appearance and group context cues using a weighted summation. We demonstrate how this improves performance of person re-identification in a sports environment over appearance based-features.
Resumo:
High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation ‘‘hotspot’’ at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.
Resumo:
Fatigue/sleepiness is recognised as an important contributory factor in fatal and serious injury road traffic incidents (RTIs), however, identifying fatigue/sleepiness as a causal factor remains an uncertain science. Within Australia attending police officers at a RTI report the causal factors; one option is fatigue/sleepiness. In some Australian jurisdictions police incident databases are subject to post hoc analysis using a proxy definition for fatigue/sleepiness. This secondary analysis identifies further RTIs caused by fatigue/sleepiness not initially identified by attending officers. The current study investigates the efficacy of such proxy definitions for attributing fatigue/sleepiness as a RTI causal factor. Over 1600 Australian drivers were surveyed regarding their experience and involvement in fatigue/sleep-related RTIs and near-misses during the past five years. Driving while fatigued/sleepy had been experienced by the majority of participants (66.0% of participants). Fatigue/sleep-related near misses were reported by 19.1% of participants, with 2.4% being involved in a fatigue/sleep-related RTI. Examination of the characteristics for the most recent event (either a near miss or crash) found that the largest proportion of incidents (28.0%) occurred when commuting to or from work, followed by social activities (25.1%), holiday travel (19.8%), or for work purposes (10.1%). The fatigue/sleep related RTI and near-miss experience of a representative sample of Australian drivers does not reflect the proxy definitions used for fatigue/sleepiness identification. In particular those RTIs that occur in urban areas and at slow speeds may not be identified. While important to have a strategy for identifying fatigue/sleepiness related RTIs proxy measures appear best suited to identifying specific subsets of such RTIs.
Resumo:
The mechanistic details of the pathogenesis of Chlamydia, an obligate intracellular pathogen of global importance, have eluded scientists due to the scarcity of traditional molecular genetic tools to investigate this organism. Here we report a chemical biology strategy that has uncovered the first essential protease for this organism. Identification and application of a unique CtHtrA inhibitor (JO146) to cultures of Chlamydia resulted in a complete loss of viable elementary body formation. JO146 treatment during the replicative phase of development resulted in a loss of Chlamydia cell morphology, diminishing inclusion size, and ultimate loss of inclusions from the host cells. This completely prevented the formation of viable Chlamydia elementary bodies. In addition to its effect on the human C. trachomatis strain, JO146 inhibited the viability of the mouse strain, Chlamydia muridarum, both in vitro and in vivo. Thus, we report a chemical biology approach to establish an essential role for Chlamydia CtHtrA. The function of CtHtrA for Chlamydia appears to be essential for maintenance of cell morphology during replicative the phase and these findings provide proof of concept that proteases can be targetted for anti-microbial therapy for intracellular pathogens.
Resumo:
Background A reliable standardized diagnosis of pneumonia in children has long been difficult to achieve. Clinical and radiological criteria have been developed by the World Health Organization (WHO), however, their generalizability to different populations is uncertain. We evaluated WHO defined chest radiograph (CXRs) confirmed alveolar pneumonia in the clinical context in Central Australian Aboriginal children, a high risk population, hospitalized with acute lower respiratory illness (ALRI). Methods CXRs in children (aged 1-60 months) hospitalized and treated with intravenous antibiotics for ALRI and enrolled in a randomized controlled trial (RCT) of Vitamin A/Zinc supplementation were matched with data collected during a population-based study of WHO-defined primary endpoint pneumonia (WHO-EPC). These CXRs were reread by a pediatric pulmonologist (PP) and classified as pneumonia-PP when alveolar changes were present. Sensitivities, specificities, positive and negative predictive values (PPV, NPV) for clinical presentations were compared between WHO-EPC and pneumonia-PP. Results Of the 147 episodes of hospitalized ALRI, WHO-EPC was significantly less commonly diagnosed in 40 (27.2%) compared to pneumonia-PP (difference 20.4%, 95% CI 9.6-31.2, P < 0.001). Clinical signs on admission were poor predictors for both pneumonia-PP and WHO-EPC; the sensitivities of clinical signs ranged from a high of 45% for tachypnea to 5% for fever + tachypnea + chest-indrawing. The PPV range was 40-20%, respectively. Higher PPVs were observed against the pediatric pulmonologist's diagnosis compared to WHO-EPC. Conclusions WHO-EPC underestimates alveolar consolidation in a clinical context. Its use in clinical practice or in research designed to inform clinical management in this population should be avoided. Pediatr Pulmonol. 2012; 47:386-392. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Purpose: The retinal pigment epithelium (RPE) is a multifunctional, monolayer of cells located between the neural retina and the choroicapillaris. γ-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and GABA receptors are known to be present in chick retina, sclera and cornea. There is a report of genes involved in GABA receptor signaling being expressed in human RPE, however, whether GABA receptors are present in chick RPE is unknown. Methods: Real time PCR and western blot were used to determine the expression of GABA receptors (alpha1 GABAA, GABABR2, and rho1 GABAC receptors) in isolated chicken RPE. Immunofluorescence using antibodies against one of the GABA receptor sub-types was used to determine receptor localization. Results: Both real-time PCR and western blot demonstrated that alpha1 GABAA, GABABR2 and rho1 GABAC receptors were expressed in isolated chick RPE. Immunofluorescence further demonstrated that GABA receptors were localized to the cell membrane and plasma of RPE cells. Conclusions: Alpha1 GABAA, GABABR2 and rho1 GABAC receptors were expressed in chick RPE. The purpose of the GABA receptors within the RPE remains to be explored.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the a mission should be aborted due to mechanical or other failure. On-board cameras provide information that can be used in the determination of potential landing sites, which are continually updated and ranked to prevent injury and minimize damage. Pulse Coupled Neural Networks have been used for the detection of features in images that assist in the classification of vegetation and can be used to minimize damage to the aerial vehicle. However, a significant drawback in the use of PCNNs is that they are computationally expensive and have been more suited to off-line applications on conventional computing architectures. As heterogeneous computing architectures are becoming more common, an OpenCL implementation of a PCNN feature generator is presented and its performance is compared across OpenCL kernels designed for CPU, GPU and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images obtained during unmanned aerial vehicle trials to determine the plausibility for real-time feature detection.
Resumo:
Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.
Resumo:
Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However, to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognize in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS) generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM) unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP) residing in HASTY, a previously characterized gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.
Resumo:
tRNA-derived RNA fragments (tRFs) are 19mer small RNAs that associate with Argonaute (AGO) proteins in humans. However, in plants, it is unknown if tRFs bind with AGO proteins. Here, using public deep sequencing libraries of immunoprecipitated Argonaute proteins (AGO-IP) and bioinformatics approaches, we identified the Arabidopsis thaliana AGO-IP tRFs. Moreover, using three degradome deep sequencing libraries, we identified four putative tRF targets. The expression pattern of tRFs, based on deep sequencing data, was also analyzed under abiotic and biotic stresses. The results obtained here represent a useful starting point for future studies on tRFs in plants. © 2013 Loss-Morais et al.; licensee BioMed Central Ltd.