239 resultados para Organic polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to generate supramolecular assemblies able to function as self-healing hydrogels, a novel ureido-pyrimidinone (UPy) monomer, 2-(N ′-methacryloyloxyethylureido)-6-(1-adamantyl)-4[1H]-pyrimidinone, was synthesized and then copolymerized with N,N-dimethylacrylamide at four different feed compositions, using a solution of lithium chloride in N,N-dimethylacetamide as the polymerization medium. The assembling process in the resulting copolymers is based on crosslinking through the reversible quadruple hydrogen bonding between side-chain UPy modules. The adamantyl substituent was introduced in order to create a “hydrophobic pocket” that may protect the hydrogen bonds against the disruptive effect of water molecules. Upon hydration to equilibrium, all copolymers generated typical hydrogels when their concentration in the hydrated system was at least 15%. The small-deformation rheometry showed that all hydrated copolymers were hydrogels that maintained a solid-like behavior, and that their extrusion through a syringe needle did not affect significantly this behavior, suggesting a self-healing capacity in these materials. An application as injectable substitutes for the eye's vitreous humor was proposed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nation-wide passive air sampling campaign recorded concentrations of persistent organic pollutants in Australia's atmosphere in 2012. XAD-based passive air samplers were deployed for one year at 15 sampling sites located in remote/background, agricultural and semi-urban and urban areas across the continent. Concentrations of 47 polychlorinated biphenyls ranged from 0.73 to 72 pg m-3 (median of 8.9 pg m-3) and were consistently higher at urban sites. The toxic equivalent concentration for the sum of 12 dioxin-like PCBs was low, ranging from below detection limits to 0.24 fg m-3 (median of 0.0086 fg m-3). Overall, the levels of polychlorinated biphenyls in Australia were among the lowest reported globally to date. Among the organochlorine pesticides, hexachlorobenzene had the highest (median of 41 pg m-3) and most uniform concentration (with a ratio between highest and lowest value [similar]5). Bushfires may be responsible for atmospheric hexachlorobenzene levels in Australia that exceeded Southern Hemispheric baseline levels by a factor of [similar]4. Organochlorine pesticide concentrations generally increased from remote/background and agricultural sites to urban sites, except for high concentrations of [small alpha]-endosulfan and DDTs at specific agricultural sites. Concentrations of heptachlor (0.47-210 pg m-3), dieldrin (ND-160 pg m-3) and trans- and cis-chlordanes (0.83-180 pg m-3, sum of) in Australian air were among the highest reported globally to date, whereas those of DDT and its metabolites (ND-160 pg m-3, sum of), [small alpha]-, [small beta]-, [gamma]- and [small delta]-hexachlorocyclohexane (ND-6.7 pg m-3, sum of) and [small alpha]-endosulfan (ND-27 pg m-3) were among the lowest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As there are a myriad of micro organic pollutants that can affect the well-being of human and other organisms in the environment the need for an effective monitoring tool is eminent. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing time-integrated load as well as representative average of concentrations of pollutants in the environment. Those techniques have been applied to monitor many pollutants caused by agricultural activities, i.e. residues of pesticides, veterinary drugs and so on. Several types of passive samplers are commercially available and their uses are widely accepted. However, not many applications of those techniques have been found in Japan, especially in the field of agricultural environment. This paper aims to introduce the field of passive sampling and then to describe some applications of passive sampling techniques in environmental monitoring studies related to the agriculture industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperbranched polymers conjugated to a peptide-aptamer were prepared using a combination of RAFT polymerisation and click chemistry for targeting tumour cells in vivo. The polymers showed enhanced cell-uptake in vitro (compared to unconjugated polymer)while excellent specificity for solid tumours was observed in vivo using a mouse model of melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers open up new possibilities in the field of molecular imaging, allowing sensitive and robust agents that can be imaged over long periods of time. This review highlights some recent advances in polymeric molecular imaging agents in both (pre)clinical and emerging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne organic pollutants have significant impacts on health; however their sources, atmospheric characteristics and resulting human exposures are poorly understood. This research characterized chemical composition of atmospheric volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyls in representative number of primary schools in Brisbane Metropolitan Area, quantified their concentrations, assessed their toxicity and apportioned them to their sources. The findings expand scientific knowledge of these pollutants, and will contribute towards science based management of risks associated with pollution emissions and air quality in schools and other urban and indoor environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the impact of organic sources of nutrients on greenhouse gas emissions (carbon dioxide, nitrous oxide and methane), nitrogen use efficiency and biomass production in subtropical cropping soils. The study was conducted in two main soil types in subtropical ecosystems, sandy loam soil and clay soil, with a variety of organic materials from agro-industrial residues and crop residues. It is important for recycling of agro-industrial residues and agricultural residues and the mitigation of greenhouse gas emissions and nitrogen use efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of material properties of an environmentally friendly, optically transparent dielectric material, polyterpenol, on the carrier transients within the pentacene-based double-layer MTM device was investigated. Polyterpenol films were RF plasma polymerised under varied process conditions, with resultant films differing in surface chemistry and morphology. Independent of type of polyterpenol, time-resolved EFISHG study of IZO/polyterpenol/pentacene/Au structures showed similar transient behaviour with carriers injected into pentacene from Au electrode only, confirming polyterpenol to be a suitable blocking layer for visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Polyterpenol fabricated under higher input power show better promise due to higher chemical and thermal stability, improved uniformity, and absence of defects.