253 resultados para Open Space Program
Resumo:
Our students come from diverse backgrounds. They need flexibility in their learning, and opportunities to review aspects of curriculum they are less confident with. An online teaching and learning programme called the Histology Challenge has been developed to supplement learning experiences offered in several first year anatomy and anatomy & physiology units at QUT. The programme is designed to be integrated with the existing Blackboard sites. The Histology Challenge emphasises the foundation concept that a complex system, such as the human body, can be better understood by examining its simpler components. The tutorial allows students to examine the cells and tissues which ultimately determine structural and functional properties of body organs. The program is interactive, asking students to make decisions and choices, demonstrating an integrated understanding of systemic and cellular aspects. It provides users with the ability to progress at their own pace and to test their understanding and knowledge. For the developer the learning activity can be easily controlled and modified via the use of text files. There are several key elements of this programme, designed to promote specific aspects of student learning. Minimum text is used, instead there is a strong emphasis on instructive artwork and original, high quality histology images presented within a framework that reinforces learning and promotes problem solving skills.
Resumo:
Research on analogies in science education has focussed on student interpretation of teacher and textbook analogies, psychological aspects of learning with analogies and structured approaches for teaching with analogies. Few studies have investigated how analogies might be pivotal in students’ growing participation in chemical discourse. To study analogies in this way requires a sociocultural perspective on learning that focuses on ways in which language, signs, symbols and practices mediate participation in chemical discourse. This study reports research findings from a teacher-research study of two analogy-writing activities in a chemistry class. The study began with a theoretical model, Third Space, which informed analyses and interpretation of data. Third Space was operationalized into two sub-constructs called Dialogical Interactions and Hybrid Discourses. The aims of this study were to investigate sociocultural aspects of learning chemistry with analogies in order to identify classroom activities where students generate Dialogical Interactions and Hybrid Discourses, and to refine the operationalization of Third Space. These aims were addressed through three research questions. The research questions were studied through an instrumental case study design. The study was conducted in my Year 11 chemistry class at City State High School for the duration of one Semester. Data were generated through a range of data collection methods and analysed through discourse analysis using the Dialogical Interactions and Hybrid Discourse sub-constructs as coding categories. Results indicated that student interactions differed between analogical activities and mathematical problem-solving activities. Specifically, students drew on discourses other than school chemical discourse to construct analogies and their growing participation in chemical discourse was tracked using the Third Space model as an interpretive lens. Results of this study led to modification of the theoretical model adopted at the beginning of the study to a new model called Merged Discourse. Merged Discourse represents the mutual relationship that formed during analogical activities between the Analog Discourse and the Target Discourse. This model can be used for interpreting and analysing classroom discourse centred on analogical activities from sociocultural perspectives. That is, it can be used to code classroom discourse to reveal students’ growing participation with chemical (or scientific) discourse consistent with sociocultural perspectives on learning.
Resumo:
PERWAPI is a component for reading and writing .NET PE-files. The name is a compound acronym for Program Executable – Reader/Writer – Application Programming Interface. The code was written by one of us (Diane Corney) with some contributions from some of the early users of the tool. PERWAPI is a managed component, written entirely in safe C#. The design of the writer part of the component is loosely based on Diane Corney’s previous PEAPI component. It is open source software, and is released under a “FreeBSD-like” license. The source may be downloaded from “http://plas.fit.qut.edu.au/perwapi/” As of the date of this document the code has facilities for reading and writing PEfiles compatible with the latest (beta-2) release of the ”Whidbey” version of .NET, that is, the Visual Studio 2005 framework. An invocation option allows earlier versions of the framework to be targeted.
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIM-compatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIMcompatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
In this research the reliability and availability of fiberboard pressing plant is assessed and a cost-based optimization of the system using the Monte- Carlo simulation method is performed. The woodchip and pulp or engineered wood industry in Australia and around the world is a lucrative industry. One such industry is hardboard. The pressing system is the main system, as it converts the wet pulp to fiberboard. The assessment identified the pressing system has the highest downtime throughout the plant plus it represents the bottleneck in the process. A survey in the late nineties revealed there are over one thousand plants around the world, with the pressing system being a common system among these plants. No work has been done to assess or estimate the reliability of such a pressing system; therefore this assessment can be used for assessing any plant of this type.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.