395 resultados para Lesson planning.
Resumo:
Problem, research strategy, and findings: The privatization of airports in Australia included airport property development rights, regulated only by federal, not local, land use control. Airports then developed commercial and retail centers outside local community plans, resulting in a history of poor coordination of planning and reflecting strong differences between public and private values in the role of the airport. Private owners embraced the concept of an Airport City, envisioning the airport as a portal of global infrastructure, whereas public planning agencies are struggling with infrastructure coordination and the development of real estate outside of the local planning regulations. Stakeholder workshops were conducted in each of the cases where key stakeholders from airports, regulating agencies, state and local governments participated in identifying key issues impacting the planning in and around airports. This research demonstrates that if modes of infrastructure provision change significantly (such as through privatization of public services), that transformation would best be accompanied by comprehensive changes in planning regimes to accommodate metropolitan and airport interdependencies. Privatization has exacerbated the poor coordination of planning in the past, and a focus on coordination between public and private infrastructure planning is needed to overcome differences in values and interests. Takeaway for practice: Governance styles differ considerably between public agencies and private corporations. Planners should understand the drivers and value differences to better coordinate infrastructure delivery and effective planning. Research support: The Airport Metropolis Research Project under the Australian Research Council's Linkage Projects funding scheme (LP0775225).
Resumo:
With the advent of large-scale wind farms and their integration into electrical grids, more uncertainties, constraints and objectives must be considered in power system development. It is therefore necessary to introduce risk-control strategies into the planning of transmission systems connected with wind power generators. This paper presents a probability-based multi-objective model equipped with three risk-control strategies. The model is developed to evaluate and enhance the ability of the transmission system to protect against overload risks when wind power is integrated into the power system. The model involves: (i) defining the uncertainties associated with wind power generators with probability measures and calculating the probabilistic power flow with the combined use of cumulants and Gram-Charlier series; (ii) developing three risk-control strategies by specifying the smallest acceptable non-overload probability for each branch and the whole system, and specifying the non-overload margin for all branches in the whole system; (iii) formulating an overload risk index based on the non-overload probability and the non-overload margin defined; and (iv) developing a multi-objective transmission system expansion planning (TSEP) model with the objective functions composed of transmission investment and the overload risk index. The presented work represents a superior risk-control model for TSEP in terms of security, reliability and economy. The transmission expansion planning model with the three risk-control strategies demonstrates its feasibility in the case study using two typical power systems
Resumo:
Precise protein quantification and recommendation is essential in clinical dietetics, particularly in the management of individuals with chronic kidney disease, malnutrition, burns, wounds, pressure ulcers, and those in active sports. The Expedited 10g Protein Counter (EP-10) was developed to simplify the quantification of dietary protein for assessment and recommendation of protein intake.1 Instead of using separate protein exchanges for different food groups to quantify the dietary protein intake of an individual, every exchange in the EP-10 accounts for an exchange each of 3g non-protein-rich food and 7g protein-rich food (Table 1). The EP-10 was recently validated and published in the Journal of Renal Nutrition recently.1 This study demonstrated that using the EP-10 for dietary protein intake quantification had clinically acceptable validity and reliability when compared with the conventional 7g protein exchange while requiring less time.2 In clinical practice, the use of efficient, accurate and practical methods to facilitate assessment and treatment plans is important. The EP-10 can be easily implemented in the nutrition assessment and recommendation for a patient in the clinical setting. This patient education tool was adapted from materials printed in the Journal of Renal Nutrition.1 The tool may be used as presented or adapted to assist patients to achieve their recommended daily protein intake.
Resumo:
Sustainable development has long been promoted as the best answer to the world’s environmental problems. This term has generated mass appeal as it implies that both the development of the built environment and its associated resource consumption can be achieved without jeopardising the natural environment. In the urban context, sustainability issues have been reflected in the promotion of sustainable urban development, which emphasises the sensible exploitation of scarce natural resources for urbanisation in a manner that allows future generations to repeat the process. This chapter highlights attempts to promote sustainable urban development through an integration of three important considerations: planning, development and the ecosystem. It highlights the fact that spatial planning processes were traditionally driven by economic and social objectives, and rarely involved promoting the sustainability agenda to achieve a sustainable urban future. As a result, rapid urbanisation has created a variety of pressures on the ecosystem upon which we rely. It is believed that the integration of the urban planning and development processes within the limitations of the ecosystem, monitored by a sustainability assessment mechanism, would offer a better approach to maintaining sustainable resource use without compromising urban development.
Resumo:
In recent years, cities have shown increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change, and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning, human needs are supplied while natural resources are used in the most effective and sustainable manner and ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, this chapter briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, it presents a conceptual framework for a new methodology for developing sustainable urban ecosystems through ecological planning approach.
Resumo:
Social media and web 2.0 tools offer opportunities to devise novel participation strategies that can engage previously difficult to reach as well as new segments of society in urban planning. This paper examines participatory planning in the four local government areas of Brisbane City Council, Gold Coast City Council, Redland City Council, and Toowoomba Regional Council, all situated in South East Queensland, Australia. The paper discusses how social media and web 2.0 tools can deliver a more engaging planning experience to citizens, and investigates local government’s current use and receptiveness to social media tools for plan making and community engagement. The study’s research informed the development of criteria to assess the level of participation reached through the current use of social media and web 2.0 in the four local government areas. This resulted in an adaptation of the International Association for Public Participation (IAP2) Toolbox to integrate these new tools which is being presented to encourage further discussion and evaluation by planning professionals.
Resumo:
Background: Modern healthcare managers are faced with pressure to deliver effective, efficient services within the context of fixed budget constraints. This requires decisions regarding the skill mix of the workforce particularly when staffing new services. One measure used to identify numbers and mix of staff in healthcare settings is workforce ratio. The aim of this study was to identify workforce ratios in nine allied health professions and to identify whether these measures are useful for planning allied health workforce requirements. Method: A systematic literature search using relevant MeSH headings of business, medical and allied health databases and relevant grey literature for the period 2000-2008 was undertaken. Results: Twelve articles were identified which described the use of workforce ratios in allied health services. Only one of these was a staffing ratio linked to clinical outcomes. The most comprehensive measures were identified in rehabilitation medicine. Conclusions: The evidence for use of staffing ratios for allied health practitioners is scarce and lags behind the fields of nursing and medicine.
Resumo:
The 'variety effect' describes the greater consumption that is observed when multiple foods with different sensory characteristics are presented either simultaneously or sequentially. Variety increases the amount of food consumed in test of ad libitum intake. However, outside the laboratory, meals are often planned in advance and then consumed in their entirety. We sought to explore the extent to which the variety effect is anticipated in this pre-meal planning. Participants were shown two food images, each representing a first or a second course of a hypothetical meal. The two courses were either, i) exactly the same food, ii) different foods from the same sensory category (sweet or savoury) or, iii) different foods from a different sensory category. In Study 1 (N = 30) these courses comprised typical ‘main meal’ foods and in Study 2 (N = 30) they comprised snack foods. For each pair of images, participants rated their expected liking of the second course and selected ideal portion sizes, both for the second course and the first and second course, combined. In both studies, as the difference between the courses (from (i) same to (ii) similar to (iii) different) increased, the second course was selected in a larger portion and it was rated as more pleasant. To our knowledge, these are the first studies to show that the variety effect is evident in the energy content of self-selected meals. This work shows that effects of variety are learned and anticipated. This extends our characterisation beyond a passive process that develops towards the end of a meal.
Resumo:
With the progressive exhaustion of fossil energy and the enhanced awareness of environmental protection, more attention is being paid to electric vehicles (EVs). Inappropriate siting and sizing of EV charging stations could have negative effects on the development of EVs, the layout of the city traffic network, and the convenience of EVs' drivers, and lead to an increase in network losses and a degradation in voltage profiles at some nodes. Given this background, the optimal sites of EV charging stations are first identified by a two-step screening method with environmental factors and service radius of EV charging stations considered. Then, a mathematical model for the optimal sizing of EV charging stations is developed with the minimization of total cost associated with EV charging stations to be planned as the objective function and solved by a modified primal-dual interior point algorithm (MPDIPA). Finally, simulation results of the IEEE 123-node test feeder have demonstrated that the developed model and method cannot only attain the reasonable planning scheme of EV charging stations, but also reduce the network loss and improve the voltage profile.
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
Mobile telecommunications have become a key lifestyle and technological trend of the twenty first century. In the context of increased urbanism and pressure on cites for citizen engagement for the purpose of creating good public places the potential of these technologies raises critical questions for planning professionals. Even though technology has become integral to all functions within our urban environment, little is known about perceptions and relationship between urban planners and the ubiquitous, ever-present digital layer of urban data and information. This paper explores this issue, via three focus groups and an additional follow-up interview with planners from local and state government, education and private sector. This paper explores the issues of integrating information and communication technologies into planning practice and the affordances that these technologies offer for community consultation and placemaking.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
This report was submitted to the Financial Planning Association and is confined to the proposals in relation to compliance with the Best Interests duty (Part B) and the provision of Scaled Advice (Part C) in the FPA Consultation Paper, Modifications to the FPA Code of Professional Practice to incorporate FoFA, released in October 2012.