311 resultados para Fibroblast viability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Stem cells are regularly cultured under normoxic conditions. However, the physiological oxygen tension in the stem cell niche is known to be as low as 1-2% oxygen, suggesting that hypoxia has a distinct impact on stem cell maintenance. Periodontal ligament cells (PDLCs) and dental pulp cells (DPCs) are attractive candidates in dental tissue regeneration. It is of great interest to know whether hypoxia plays a role in maintaining the stemness and differentiation capacity of PDLCs and DPCs. Methods. PDLCs and DPCs were cultured either in normoxia (20% O2) or hypoxia (2% O2). Cell viability assays were performed and the expressions of pluripotency markers (Oct-4, Sox2, and c-Myc) were detected by qRT-PCR and western blotting. Mineralization, glycosaminoglycan (GAG) deposition, and lipid droplets formation were assessed by Alizarin red S, Safranin O, and Oil red O staining, respectively. Results. Hypoxia did not show negative effects on the proliferation of PDLCs and DPCs. The pluripotency markers and differentiation potentials of PDLCs and DPCs significantly increased in response to hypoxic environment. Conclusions. Our findings suggest that hypoxia plays an important role in maintaining the stemness and differentiation capacity of PDLCs and DPCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72. h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20 compression, 1. Hz) over 3. days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24. h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24. h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical stimulation; this was significant in haematomas from younger, but not from older patients. Other GFs were not mechanically regulated. In conclusion, the paracrine pro-angiogenic capacity of early human haematomas is enhanced by mechanical stimulation. This effect lasts even after removing the mechanical stimulus and appears to be VEGFR2-dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogen receptor (ER)-β has been shown to possess a tumor suppressive effect, and is a potential target for cancer therapy. Using gene-expression meta-analysis of human malignant pleural mesothelioma, we identified an ESR2 (ERβ coding gene) signature. High ESR2 expression was strongly associated with low succinate dehydrogenase B (SDHB) (which encodes a mitochondrial respiratory chain complex II subunit) expression. We demonstrate that SDHB loss induced ESR2 expression, and that activated ERβ, by over-expression or by selective agonist stimulation, negatively affected oxidative phosphorylation compromising mitochondrial complex II and IV activity. This resulted in reduced mitochondrial ATP production, increased glycolysis dependence and impaired cell proliferation. The observed in vitro effects were phenocopied in vivo using a selective ERβ agonist in a mesothelioma mouse model. On the whole, our data highlight an unforeseen interaction between ERβ-mediated tumor suppression and energy metabolism that may be exploited to improve on the therapy for clinical management of malignant mesothelioma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dermal wound repair involves complex interactions between cells, cytokines and mechanics to close injuries to the skin. In particular, we investigate the contribution of fibroblasts, myofibroblasts, TGFβ, collagen and local tissue mechanics to wound repair in the human dermis. We develop a morphoelastic model where a realistic representation of tissue mechanics is key, and a fibrocontractive model that involves a reasonable approximation to the true kinetics of the important bioactive species. We use each of these descriptions to elucidate the mechanisms that generate pathologies such as hypertrophic scars, contractures and keloids. We find that for hypertrophic scar and contracture development, factors regulating the myofibroblast phenotype are critical, with heightened myofibroblast activation, reduced myofibroblast apoptosis or prolonged inflammation all predicted as mediators for scar hypertrophy and contractures. Prevention of these pathologies is predicted when myofibroblast apoptosis is induced, myofibroblast activation is blocked or TGFβ is neutralised. To investigate keloid invasion, we develop a caricature representation of the fibrocontractive model and find that TGFβ spread is the driving factor behind keloid growth. Blocking activation of TGFβ is found to cause keloid regression. Thus, we recommend myofibroblasts and TGFβ as targets for clinicians when developing intervention strategies for prevention and cure of fibrotic scars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We appreciate Holmes' body of work relating to transitions within the Australian landscape, and welcome the opportunity to engage in a discussion on this topic. The paper to which Holmes refers (Bjørkhaug and Richards, 2008) examined the application of agricultural (rather than landscape) multifunctionality in both Norway and Australia. Of specific focus was how non-tradeable concerns, such as environmental sustainability, faired under these divergent systems. We argued that Norway's multifunctionality was strong, due to it being embraced at both the policy and actor level, whereas Australia's could be described as weak. This ‘weak multifunctionality’ that we observed in Australia was due to an emerging bi-lateral (state and federal) policy framework that advocated the importance of environmental values which was rarely embraced by landholders who found themselves trapped on the ‘agricultural treadmill’. The nature of the treadmill is that alternative forms of land use are unthinkable when on-farm investments have been made that support the status quo – to get bigger and/or more efficient. For many of the Australian landholders interviewed in relation to this study, efficiency in production was at odds with the values necessary to effect a transition toward multifunctionality. For instance, graziers in Central Queensland were unconvinced of the value of conserving native flora and fauna when economic viability can be better assured through clear felling native forests to increase the productive capacity of the land.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The statement. 'it is hard to be green when you are in the red' is commonly used by primary producers to explain the necessity of placing a greater emphasis on financial survival rather than longer term environmental sustainability. The subject of environmental sustainability on pastoral properties was explored during face-to:face interviews with cattle grazers in the Fitzroy Basin area of Central Queensland. Findings from the study suggest that while economic factors are important, they are not the only determinant in whether a landholder priorities environmental sustainability, Rather. social factors such as knowledge claims. beliefs, attitudes. values, peer pressure and social sanctioning, constructed and enacted within the productivist paradigm of primary production. play a crucial role in how landholders manage their natural assets. This suggests that the edict that 'It is hard to be green when you are in the red' is inaccurate and does not explain why conservation-focused pastoral management is not yet occurring on a large scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ‘war on terror’ and ongoing terrorist attacks around the world have generated a growing body of literature on national and international measures to counteract terrorist activity. This detailed study investigates an aspect of contemporary counter-terrorism that has been largely overlooked; the impact of these measures on the continued viability of the democratic state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measures by which major developments are officially approved for construction are - by common agreement - complex, time-consuming, and of questionable merit in terms of maintaining ecological viability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparan sulfate (HS) sugar chains attached to core proteoglycans (PGs) termed HSPGs mediate an extensive range of cell-extracellular matrix (ECM) and growth factor interactions based upon their sulfation patterns. When compared with non-osteogenic (maintenance media) culture conditions, under established osteogenic culture conditions, MC3T3-E1 cells characteristically increase their osteogenic gene expression profile and switch their dominant fibroblast growth factor receptor (FGFR) from FGFR1 (0.5-fold decrease) to FGFR3 (1.5-fold increase). The change in FGFR expression profile of the osteogenic-committed cultures was reflected by their inability to sustain an FGF-2 stimulus, but respond to BMP-2 at day 14 of culture. The osteogenic cultures decreased their chondroitin and dermatan sulfate PGs (biglycan, decorin, and versican), but increased levels of the HS core protein gene expression, in particular glypican-3. Commitment and progress through osteogenesis is accompanied by changes in FGFR expression, decreased GAG initiation but increased N- and O-sulfation and reduced remodeling of the ECM (decreased heparanase expression) resulting in the production of homogenous (21 kDa) HS chain. With the HSPG glypican-3 expression strongly upregulated in these processes, siRNA was used to knockdown this gene to examine the effect on osteogenic commitment. Reduced glypican-3 abrogated the expression of Runx2, and thus differentiation. The reintroduction of this HSPG into Runx2-null cells allowed osteogenesis to proceed. These results demonstrate the dependence of osteogenesis on specific HS chains, in particular those associated with glypican-3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblast growth factor-2 (FGF2) is a powerful promoter of bone growth. We demonstrate here that brief exposure to FGF2 enhances mineralized nodule formation in cultured rat osteoprogenitor cells due to an expansion of cells that subsequently mineralize. This mitogenic effect is mediated via sulfated glycosaminoglycans (GAGs), FGFR1, and the extracellular signal-regulated kinase (ERK) pathway. The GAGs involved in this stimulation are chondroitin sulfates (CS) rather than heparan sulfates (HS). However, continuous FGF2 treatment reduces alkaline phosphatase (ALP) activity, downregulates collagen Ialpha1 (ColIalpha1) and FGFR3 expression, upregulates the expression and secretion of osteopontin (OPN) and inhibits mineralization. The inhibitory effects of FGF2 on FGFR3 expression and ALP activity are also mediated by the ERK pathway, although the effects of FGF2 on ColIalpha1 and OPN expression are mediated by GAGs and PKC activity. Thus short-term activation of FGF2/FGFR1 promotes osteoprogenitor proliferation and subsequent differentiation, while long-term activation of FGF2 signaling disrupts mineralization by modulating osteogenic marker expression. This study thus establishes the central role of sulfated GAGs in the osteogenic progression of osteoprogenitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cell-cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells towards the ultimate aim of high throughput screening of anti-cancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Managing and maintaining infrastructure assets are one of the indispensible tasks for many government agencies to preserve the nations' economic viability and social welfare. To reduce the expenditures over the life-cycle of an infrastructure asset and extend the period for which the asset performs effectively, proper repair and maintenance are essential. While repair, maintenance, minor alteration and addition (RMAA) sector is expanding in many developed cities, occurrences of fatalities and injuries in this sector are also soaring. The purposes of this paper are to identify and then evaluate the various strategies for improving the safety performance of RMAA works. Design/methodology/approach Semi-structured interviews and two rounds of Delphi survey were conducted for data collection. Findings Raising safety awareness of RMAA workers and selecting contractors with a good record of safety performance are the two most important strategies to improve the safety performance in this sector. Technology innovations and a pay-for-safety scheme are regarded as the two least important strategies. Originality/value The paper highlights possible ways to enhance safety of the rather under-explored RMAA sector in the construction industry.