696 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
Resumo:
Decision-making is such an integral aspect in health care routine that the ability to make the right decisions at crucial moments can lead to patient health improvements. Evidence-based practice, the paradigm used to make those informed decisions, relies on the use of current best evidence from systematic research such as randomized controlled trials. Limitations of the outcomes from randomized controlled trials (RCT), such as “quantity” and “quality” of evidence generated, has lowered healthcare professionals’ confidence in using EBP. An alternate paradigm of Practice-Based Evidence has evolved with the key being evidence drawn from practice settings. Through the use of health information technology, electronic health records (EHR) capture relevant clinical practice “evidence”. A data-driven approach is proposed to capitalize on the benefits of EHR. The issues of data privacy, security and integrity are diminished by an information accountability concept. Data warehouse architecture completes the data-driven approach by integrating health data from multi-source systems, unique within the healthcare environment.
Resumo:
Science, Art and Science Art collaborations are generally presented and understood in terms of their products. We argue that the process of Science art can be a significant, even principal benefit of these collaborations, even though it may be largely invisible to anyone other than the collaborators. Hosting the Centenary of Canberra Science Art Commission at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) has shown us that while Science and Art pursue orthogonal dimensions of creativity and innovation, collaborators can combine these directions to access new areas of imagination and ideas.
Resumo:
Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.
Resumo:
This chapter is focussed on the research and development of an intelligent driver warning system (IDWS) as a means to improve road safety and driving comfort. Two independent IDWS case studies are presented. The first study examines the methodology and implementation for attentive visual tracking and trajectory estimation for dynamic scene segmentation problems. In the second case study, the concept of driver modelling is evaluated which can be used to provide useful feedback to drivers. In both case studies, the quality of IDWS is largely determined by the modelling capability for estimating multiple vehicle trajectories and modelling driving behaviour. A class of modelling techniques based on neural-fuzzy systems, which exhibits provable learning and modelling capability, is proposed. For complex modelling problems where the curse of dimensionality becomes an issue, a network construction algorithm based on Adaptive Spline Modelling of Observation Data (ASMOD) is also proposed.
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
Moreton Island and several other large siliceous sand dune islands and mainland barrier deposits in SE Queensland represent the distal, onshore component of an extensive Quaternary continental shelf sediment system. This sediment has been transported up to 1000 km along the coast and shelf of SE Australia over multiple glacioeustatic sea-level cycles. Stratigraphic relationships and a preliminary Optically Stimulated Luminance (OSL) chronology for Moreton Island indicate a middle Pleistocene age for the large majority of the deposit. Dune units exposed in the centre of the island and on the east coast have OSL ages that indicate deposition occurred between approximately 540 ka and 350 ka BP, and at around 96±10 ka BP. Much of the southern half of the island has a veneer of much younger sediment, with OSL ages of 0.90±0.11 ka, 1.28±0.16 ka, 5.75±0.53 ka and <0.45 ka BP. The younger deposits were partially derived from the reworking of the upper leached zone of the much older dunes. A large parabolic dune at the northern end of the island, OSL age of 9.90±1.0 ka BP, and palaeosol exposures that extend below present sea level suggest the Pleistocene dunes were sourced from shorelines positioned several to tens of metres lower than, and up to few kilometres seaward of the present shoreline. Given the lower gradient of the inner shelf a few km seaward of the island, it seems likely that periods of intermediate sea level (e.g. ~20 m below present) produced strongly positive onshore sediment budgets and the mobilisation of dunes inland to form much of what now comprises Moreton Island. The new OSL ages and comprehensive OSL chronology for the Cooloola deposit, 100 km north of Moreton Island, indicate that the bulk of the coastal dune deposits in SE Queensland were emplaced between approximately 540 ka BP and prior to the Last Interglacial. This chronostratigraphic information improves our fundamental understanding of long-term sediment transport and accumulation on large-scale continental shelf sediment systems.
Resumo:
Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning.
Resumo:
As critical infrastructure such as transportation hubs continue to grow in complexity, greater importance is placed on monitoring these facilities to ensure their secure and efficient operation. In order to achieve these goals, technology continues to evolve in response to the needs of various infrastructure. To date, however, the focus of technology for surveillance has been primarily concerned with security, and little attention has been placed on assisting operations and monitoring performance in real-time. Consequently, solutions have emerged to provide real-time measurements of queues and crowding in spaces, but have been installed as system add-ons (rather than making better use of existing infrastructure), resulting in expensive infrastructure outlay for the owner/operator, and an overload of surveillance systems which in itself creates further complexity. Given many critical infrastructure already have camera networks installed, it is much more desirable to better utilise these networks to address operational monitoring as well as security needs. Recently, a growing number of approaches have been proposed to monitor operational aspects such as pedestrian throughput, crowd size and dwell times. In this paper, we explore how these techniques relate to and complement the more commonly seen security analytics, and demonstrate the value that can be added by operational analytics by demonstrating their performance on airport surveillance data. We explore how multiple analytics and systems can be combined to better leverage the large amount of data that is available, and we discuss the applicability and resulting benefits of the proposed framework for the ongoing operation of airports and airport networks.
Resumo:
Papua New Guinea (PNG) is facing what must seem like an insurmountable challenge to deliver quality healthcare servicesfor women living in both rural and urban areas. Glo bal governing bodies and donor agencies including WHO and UN have indicated that PNG does not have an appropriate health information system. Although there are some systems in place, to date, little research has been conducted on improving or resolving the data integrity and integration issues of the existing health information systems and automating the capture of women and newborns information in PNG. This current research study concentrates on the adoption of eHealth, as an innovative tool to strengthen the health information systems in PNG to meet WHO standards. The research targets maternal and child health focussing on child birth records asan exemplar...
Resumo:
Past research has suggested that social engineering poses the most significant security risk. Recent studies have suggested that social networking sites (SNSs) are the most common source of social engineering attacks. The risk of social engineering attacks in SNSs is associated with the difficulty of making accurate judgments regarding source credibility in the virtual environment of SNSs. In this paper, we quantitatively investigate source credibility dimensions in terms of social engineering on Facebook, as well as the source characteristics that influence Facebook users to judge an attacker as credible, therefore making them susceptible to victimization. Moreover, in order to predict users’ susceptibility to social engineering victimization based on their demographics, we investigate the effectiveness of source characteristics on different demographic groups by measuring the consent intentions and behavior responses of users to social engineering requests using a role-play experiment.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.
Resumo:
The work is a report of research on using multiple inverters of Battery Energy Storage Systems with angle droop controllers to share real power in an isolated micro grid system consisting of inertia based Distributed Generation units and variable load. The proposed angle droop control method helps to balance the supply and demand in the micro grid autonomous mode through charging and discharging of the Battery Energy Storage Systems while ensuring that the state of charge of the storage devices is within safe operating conditions. The proposed method is also studied for its effectiveness for frequency control. The proposed control system is verified and its performance validated with simulation software MATLAB/SIMULINK.
Resumo:
There is an increased interest in the use of Unmanned Aerial Vehicles for load transportation from environmental remote sensing to construction and parcel delivery. One of the main challenges is accurate control of the load position and trajectory. This paper presents an assessment of real flight trials for the control of an autonomous multi-rotor with a suspended slung load using only visual feedback to determine the load position. This method uses an onboard camera to take advantage of a common visual marker detection algorithm to robustly detect the load location. The load position is calculated using an onboard processor, and transmitted over a wireless network to a ground station integrating MATLAB/SIMULINK and Robotic Operating System (ROS) and a Model Predictive Controller (MPC) to control both the load and the UAV. To evaluate the system performance, the position of the load determined by the visual detection system in real flight is compared with data received by a motion tracking system. The multi-rotor position tracking performance is also analyzed by conducting flight trials using perfect load position data and data obtained only from the visual system. Results show very accurate estimation of the load position (~5% Offset) using only the visual system and demonstrate that the need for an external motion tracking system is not needed for this task.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.
Resumo:
In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. In this paper, a novel job shop approach is proposed to create a more efficient integrated harvesting and sugarcane transport scheduling system to reduce the cost of sugarcane transport. There are several benefits that can be attained by treating the train scheduling problem as a job shop problem. Job shop is generic and suitable for all trains scheduling problems. Job shop technique prevents operating two trains on one section at the same time because it considers that the section or the machine is unique. This technique is more promising to find better solutions in reasonable computation times.