302 resultados para Electrical impedance tomography, Calderon problem, factorization method
Resumo:
Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)bf(A)b, where A A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.
Resumo:
This paper considers two problems that frequently arise in dynamic discrete choice problems but have not received much attention with regard to simulation methods. The first problem is how to simulate unbiased simulators of probabilities conditional on past history. The second is simulating a discrete transition probability model when the underlying dependent variable is really continuous. Both methods work well relative to reasonable alternatives in the application discussed. However, in both cases, for this application, simpler methods also provide reasonably good results.
Resumo:
In this paper we analyse properties of the message expansion algorithm of SHA-1 and describe a method of finding differential patterns that may be used to attack reduced versions of SHA-1. We show that the problem of finding optimal differential patterns for SHA-1 is equivalent to the problem of finding minimal weight codeword in a large linear code. Finally, we present a number of patterns of different lengths suitable for finding collisions and near-collisions and discuss some bounds on minimal weights of them.
Resumo:
Design of a battery energy storage system (BESS) in a buffer scheme is examined for the purpose of attenuating the effects of unsteady input power from wind farms. The design problem is formulated as maximization of an objective function that measures the economic benefit obtainable from the dispatched power from the wind farm against the cost of the BESS. Solution to the problem results in the determination of the capacity of the BESS to ensure constant dispatched power to the connected grid, while the voltage level across the dc-link of the buffer is kept within preset limits. A computational procedure to determine the BESS capacity and the evaluation of the dc voltage is shown. Illustrative examples using the proposed design method are included.
Resumo:
This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.
Resumo:
In the electricity market environment, load-serving entities (LSEs) will inevitably face risks in purchasing electricity because there are a plethora of uncertainties involved. To maximize profits and minimize risks, LSEs need to develop an optimal strategy to reasonably allocate the purchased electricity amount in different electricity markets such as the spot market, bilateral contract market, and options market. Because risks originate from uncertainties, an approach is presented to address the risk evaluation problem by the combined use of the lower partial moment and information entropy (LPME). The lower partial moment is used to measure the amount and probability of the loss, whereas the information entropy is used to represent the uncertainty of the loss. Electricity purchasing is a repeated procedure; therefore, the model presented represents a dynamic strategy. Under the chance-constrained programming framework, the developed optimization model minimizes the risk of the electricity purchasing portfolio in different markets because the actual profit of the LSE concerned is not less than the specified target under a required confidence level. Then, the particle swarm optimization (PSO) algorithm is employed to solve the optimization model. Finally, a sample example is used to illustrate the basic features of the developed model and method.
Resumo:
We propose a method of representing audience behavior through facial and body motions from a single video stream, and use these features to predict the rating for feature-length movies. This is a very challenging problem as: i) the movie viewing environment is dark and contains views of people at different scales and viewpoints; ii) the duration of feature-length movies is long (80-120 mins) so tracking people uninterrupted for this length of time is still an unsolved problem, and; iii) expressions and motions of audience members are subtle, short and sparse making labeling of activities unreliable. To circumvent these issues, we use an infrared illuminated test-bed to obtain a visually uniform input. We then utilize motion-history features which capture the subtle movements of a person within a pre-defined volume, and then form a group representation of the audience by a histogram of pair-wise correlations over a small-window of time. Using this group representation, we learn our movie rating classifier from crowd-sourced ratings collected by rottentomatoes.com and show our prediction capability on audiences from 30 movies across 250 subjects (> 50 hrs).
Resumo:
The generation of a correlation matrix for set of genomic sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. Each sequence may be millions of bases long and there may be thousands of such sequences which we wish to compare, so not all sequences may fit into main memory at the same time. Each sequence needs to be compared with every other sequence, so we will generally need to page some sequences in and out more than once. In order to minimize execution time we need to minimize this I/O. This paper develops an approach for faster and scalable computing of large-size correlation matrices through the maximal exploitation of available memory and reducing the number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different bioinformatics problems with different correlation matrix sizes. The significant performance improvement of the approach over previous work is demonstrated through benchmark examples.
Resumo:
This paper presents a novel battery direct integration scheme for renewable energy systems. The idea is to replace ordinary capacitors of a three-level flying-capacitor inverter by three battery banks to alleviate power fluctuations in renewable generation. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, the major problem with this approach is the uneven distribution of space vectors which is due to unavoidable unbalance in clamping voltages. A detailed analysis on the effects of this issue and a novel carrier based pulse width modulation method, which can generate undistorted currents even in the presence of unevenly distributed space vectors, are presented in this paper. A charge/discharge controller is also proposed for power sharing and state of charge balancing of battery banks. Simulation results are presented to verify the efficacy of the proposed system, modulation method and power sharing controller.
Resumo:
This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The idea is to replace ordinary capacitors of a 3-level flying capacitor inverter by supercapacitors and operate them under variable voltage conditions. This approach eliminates the need of interfacing dc-dc converters for supercapacitor integration and thus considerably improves the overall efficiency. However, the major problem of this unique system is the change of supercapacitor voltages. An analysis on the effects of these voltage variations are presented. A space vector modulation method, built from the scratch, is proposed to generate undistorted current even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalisation algorithm is also proposed. Furthermore, resistive behavior of supercapacitors at high frequencies and the need for a low pass filter are highlighted. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.
Resumo:
"This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor."--publisher website
Resumo:
This paper presents a novel dc-link voltage regulation technique for a hybrid inverter system formed by cascading two 3-level inverters. The two inverters are named as “bulk inverter” and “conditioning inverter”. For the hybrid system to act as a nine level inverter, conditioning inverter dc link voltage should be maintained at one third of the bulk inverter dc link voltage. Since the conditioning inverter is energized by two series connected capacitors, dc-link voltage regulation should be carried out by controlling the capacitor charging/discharging times. A detailed analysis of conditioning inverter capacitor charging/discharging process and a simplified general rule, derived from the analysis, are presented in this paper. Time domain simulations were carried out to demonstrate efficacy of the proposed method on regulating the conditioning inverter dc-link voltage under various operating conditions.
Resumo:
This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.
Resumo:
A power electronics-based buffer is examined in which through control of its PWM converters, the buffer-load combination is driven to operate under either constant power or constant impedance modes. A battery, incorporated within the buffer, provides the energy storage facility to facilitate the necessary power flow control. Real power demand from upstream supply is regulated under fault condition, and the possibility of voltage or network instability is reduced. The proposed buffer is also applied to a wind farm. It is shown that the buffer stabilizes the power contribution from the farm. Based on a battery cost-benefit analysis, a method is developed to determine the optimal level of the power supplied from the wind farm and the corresponding capacity of the battery storage system.
Resumo:
The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time