250 resultados para Elastomeric Hybrid Composites
Resumo:
This study reports a hybrid of two metal-organic semiconductors that are based on organic charge transfer complexes of 7,7,8,8-tetracyanoquinodimethane (TCNQ). It is shown that the spontaneous reaction between semiconducting microrods of CuTCNQ with Ag+ ions leads to the formation of a CuTCNQ/AgTCNQ hybrid, both in aqueous solution and acetonitrile, albeit with completely different reaction mechanisms. In an aqueous environment, the reaction proceeds by a complex galvanic replacement (GR) mechanism, wherein in addition to AgTCNQ nanowires, Ag0 nanoparticles and Cu(OH)2 crystals decorate the surface of CuTCNQ microrods. Conversely, in acetonitrile, a GR mechanism is found to be thermodynamically unfavorable and instead a corrosion-recrystallization mechanism leads to the decoration of CuTCNQ microrods with AgTCNQ nanoplates, resulting in a pure CuTCNQ/AgTCNQ hybrid metal-organic charge transfer complex. While hybrids of two different inorganic semiconductors are regularly reported, this report pioneers the formation of a hybrid involving two metal-organic semiconductors that will expand the scope of TCNQ-based charge transfer complexes for improved catalysis, sensing, electronics and biological applications.
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
Forestry by-products have potential applications as components of wood composites. Replacement of conventional pine radiata wood-fibres by the fibres from the seeds (SCF) of the by-products, require determining and optimizing the mechanical properties to producing highest quality products. Response to mechanical stress is an important aspect to consider towards partial or full replacement of the wood-fibres by SCFs. In the present study the critical strain energy release rate, and the fracture toughness are derived from the published data. The present work uses rules of mixture to derive the mechanical and the physical properties of the SCF and relates the performance of the composites of the wood-fibres and the SCF to chemical composition, dispersion, weight and Vf of the fibres. We have also derived the Gc, the critical strain energy release rate, KIC, the fracture toughness of the composites.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.
Resumo:
Hybrid powerplants combining internal combustion engines and electric motor prime movers have been extensively developed for land- and marine-based transport systems. The use of such powerplants in airborne applications has been historically impractical due to energy and power density constraints. Improvements in battery and electric motor technology make aircraft hybrid powerplants feasible. This paper presents a technique for determining the feasibility and mechanical effectiveness of powerplant hybridisation. In this work, a prototype aircraft hybrid powerplant was designed, constructed and tested. It is shown that an additional 35% power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given unmanned aerial system. A flight dynamic model was developed using the AeroSim Blockset in MATLAB Simulink. The results have shown that climb rates can be improved by 56% and endurance increased by 13% when using the hybrid powerplant concept.
Resumo:
As the Internet becomes deeply embedded into consumers’ daily life, the digital virtual world brings significant influence to consumers’ self and narrative. Prior studies look at consumer self from either from a certain online space or comparing consumers’ physical and digital virtual selves but not the integration of the physical/digital world. This paper aims to explore the meanings of the digital virtual space on consumers’ narrative as a whole (their interests, dreams, or subjectivity). We utilise a postmodern concept of the cyborg to understand the cultural complexity, subjective meanings of, and the extent to which the digital virtual space plays a role in consumers’ self-narrative. We conducted in-depth interviews and gathered three consumer narratives. Our findings indicate that consumers’ narrative contains important fragments from both physical and digital virtual worlds and their physical and digital virtual selves form a feedback loop that strengthen their overall narrative.
Resumo:
The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba 3 grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.
Resumo:
Australian climate is highly suitable for using outdoor air for free building cooling. In order to evaluate the suitability of hybrid cooler for specific applications, a pre-design climate assessment tool is developed and presented in this paper. In addition to the consideration of the local climate, comfort zone proposed by ASHRAE handbook and specific design of building and operation of hybrid cooler, possible influence from environmental factors (e.g. air humidity and air velocity), as well as personal factors (e.g. activity level and clothing insulation) on occupant’s thermal comfort are also considered in this tool. It is demonstrated that with the input of climatic data for a particular location and the associated design data for a specific application, the developed climate assessment tool is able to not only sort outdoor air conditions into the different process regions but also project them onto the psychrometric chart. It can also be used to estimate the hours for an individual operational mode under various climate conditions and summarize them in a table “Results”.
Resumo:
A crucial issue with hybrid quantum secret sharing schemes is the amount of data that is allocated to the participants. The smaller the amount of allocated data, the better the performance of a scheme. Moreover, quantum data is very hard and expensive to deal with, therefore, it is desirable to use as little quantum data as possible. To achieve this goal, we first construct extended unitary operations by the tensor product of n, n ≥ 2, basic unitary operations, and then by using those extended operations, we design two quantum secret sharing schemes. The resulting dual compressible hybrid quantum secret sharing schemes, in which classical data play a complementary role to quantum data, range from threshold to access structure. Compared with the existing hybrid quantum secret sharing schemes, our proposed schemes not only reduce the number of quantum participants, but also the number of particles and the size of classical shares. To be exact, the number of particles that are used to carry quantum data is reduced to 1 while the size of classical secret shares also is also reduced to l−2 m−1 based on ((m+1, n′)) threshold and to l−2 r2 (where r2 is the number of maximal unqualified sets) based on adversary structure. Consequently, our proposed schemes can greatly reduce the cost and difficulty of generating and storing EPR pairs and lower the risk of transmitting encoded particles.
Resumo:
A fractal method was introduced to quantitatively characterize the dispersibility of modified kaolinite (MK) and precipitated silica (PS) in styrene–butadiene rubber (SBR) matrix based on the lower magnification transmission electron microscopic images. The fractal dimension (FD) is greater, and the dispersion is worse. The fractal results showed that the dispersibility of MK in the latex blending sample is better than that in the mill blending samples. With the increase of kaolinite content, the FD increases from 1.713 to 1.800, and the dispersibility of kaolinite gradually decreases. There is a negative correlation between the dispersibility and loading content. With the decrease of MK and increase of PS, the FD significantly decreases from 1.735 to 1.496 and the dipersibility of kaolinite remarkably increases. The hybridization can improve the dispersibility of fillers in polymer matrix. The FD can be used to quantitatively characterize the aggregation and dispersion of kaolinite sheets in rubber matrix.