444 resultados para EXPERIMENTAL STORAGE-RING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the time of its official opening on 15 July 2011, The University of Queensland 1.22 MW array was the largest flat-panel PhotoVoltaic (PV) array in Australia. This PV array consists of over 5000 Trina Solar 240 Wp polycrystalline silicon PV modules installed across four rooftops at the St Lucia campus. Grid connection was achieved with 85 12.5 kW three phase and four 5 kW single phase grid connect inverters manufactured by Power-One. The site also includes one 8.4 kWp SolFocus concentrating solar 2 axis tracking PV array. Site wide monitoring and data logging of all DC, AC and environmental quantities will allow this array to be a rich source of research data. The site will also include a 200 kW 400 kWh zinc bromine energy storage system by Redflow, and associated power quality metering and monitoring. This paper presents highlights of the project feasibility study which included a site survey, shading analysis, and technology and triple bottom line assessment. A detailed description of the final technical implementation including discussion of alterative options considered is given. Finally, example initial data showing yield, trends and early example experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy policy is driving renewable energy deployment with most of the developed countries having some form of renewable energy portfolio standard and emissions reduction target. To deliver upon these ambitious targets, those renewable energy technologies that are commercially available, such as wind and solar, are being deployed, but inherently have issues with intermittency of supply. To overcome these issues, storage options will need to be introduced into the distribution network with benefits for both demand management and power systems quality. How this can be utilised most effectively within the distribution network will allow for an even greater proportion of our energy demand to be met through renewable resources and meet the aspirational targets set. The distribution network will become a network of smart-grids, but to work efficiently and effectively, power quality issues surrounding intermittency must be overcome, with storage being a major factor in this solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a design technique of a fully regenerative dynamic dynamometer. It incorporates an energy storage system to absorb the energy variation due to dynamometer transients. This allows the minimum power electronics requirement at the grid to supply the losses. The simulation results of the full system over a driving cycle show the amount of energy required to complete a driving cycle, therefore the size of the energy storage system can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurately quantifying total freshwater storage methane release to atmosphere requires the spatial–temporal measurement of both diffusive and ebullitive emissions. Existing floating chamber techniques provide localised assessment of methane flux, however, significant errors can arise when weighting and extrapolation to the entire storage, particularly when ebullition is significant. An improved technique has been developed that compliments traditional chamber based experiments to quantify the storage-scale release of methane gas to atmosphere through ebullition using the measurements from an Optical Methane Detector (OMD) and a robotic boat. This provides a conservative estimate of the methane emission rate from ebullition along with the bubble volume distribution. It also georeferences the area of ebullition activity across entire storages at short temporal scales. An assessment on Little Nerang Dam in Queensland, Australia, demonstrated whole storage methane release significantly differed spatially and throughout the day. Total methane emission estimates showed a potential 32-fold variation in whole-of-dam rates depending on the measurement and extrapolation method and time of day used. The combined chamber and OMD technique showed that 1.8–7.0% of the surface area of Little Nerang Dam is accounting for up to 97% of total methane release to atmosphere throughout the day. Additionally, over 95% of detectable ebullition occurred in depths less than 12 m during the day and 6 m at night. This difference in spatial and temporal methane release rate distribution highlights the need to monitor significant regions of, if not the entire, water storage in order to provide an accurate estimate of ebullition rates and their contribution to annual methane emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract An experimental dataset representing a typical flow field in a stormwater gross pollutant trap (GPT) was visualised. A technique was developed to apply the image-based flow visualisation (IBFV) algorithm to the raw dataset. Particle image velocimetry (PIV) software was previously used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding stormwater pollutant capture and retention behaviour within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate the possible flow paths of pollutants entering the GPT. The investigated flow paths were compared with the behaviour of pollutants monitored during experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shaft fracture at an early stage of operation is a common problem for a certain type of wind turbine. To determine the cause of shaft failure a series of experimental tests were conducted to evaluate the chemical composition and mechanical properties. A detail analysis involving macroscopic feature and microstructure analysis of the material of the shaft was also performed to have an in depth knowledge of the cause of fracture. The experimental tests and analysis results show that there are no significant differences in the material property of the main shaft when comparing it with the Standard, EN10083-3:2006. The results show that stress concentration on the shaft surface close to the critical section of the shaft due to rubbing of the annular ring and coupled with high stress concentration caused by the change of inner diameter of the main shaft are the main reasons that result in fracture of the main shaft. In addition, inhomogeneity of the main shaft micro-structure also accelerates up the fracture process of the main shaft. In addition, the theoretical calculation of equivalent stress at the end of the shaft was performed, which demonstrate that cracks can easily occur under the action of impact loads. The contribution of this paper is to provide a reference in fracture analysis of similar main shaft of wind turbines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utility functions in Bayesian experimental design are usually based on the posterior distribution. When the posterior is found by simulation, it must be sampled from for each future data set drawn from the prior predictive distribution. Many thousands of posterior distributions are often required. A popular technique in the Bayesian experimental design literature to rapidly obtain samples from the posterior is importance sampling, using the prior as the importance distribution. However, importance sampling will tend to break down if there is a reasonable number of experimental observations and/or the model parameter is high dimensional. In this paper we explore the use of Laplace approximations in the design setting to overcome this drawback. Furthermore, we consider using the Laplace approximation to form the importance distribution to obtain a more efficient importance distribution than the prior. The methodology is motivated by a pharmacokinetic study which investigates the effect of extracorporeal membrane oxygenation on the pharmacokinetics of antibiotics in sheep. The design problem is to find 10 near optimal plasma sampling times which produce precise estimates of pharmacokinetic model parameters/measures of interest. We consider several different utility functions of interest in these studies, which involve the posterior distribution of parameter functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to combined bending and shear actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Combined bending and shear is especially prevalent at the supports of continuous span and cantilever beams, where the interaction of high shear force and bending moment can reduce the capacity of a section to well below that for the same section subject only to pure shear or moment. Hence experimental studies were conducted to assess the combined bending and shear behaviour and strengths of LSBs. Eighteen tests were conducted and the results were compared with current AS/NZS 4600 and AS 4100 design rules. AS/NZS 4600 design rules were shown to grossly underestimate the combined bending and shear capacities of LSBs and hence two lower bound design equations were proposed based on experimental results. Use of these equations will significantly improve the confidence and cost-effectiveness of designing LSBs for combined bending and shear actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. Made by Motion is a collaboration between digital artist Paul Van Opdenbosch and performer and choreographer Elise May; a series of studies on captured motion data used to generate experimental visual forms that reverberate in space and time. The project investigates the invisible forces generated by and influencing the movement of a dancer. Along with how the forces can be captured and applied to generating visual outcomes that surpass simple data visualisation, projecting the intent of the performer’s movements. The source or ‘seed’ comes from using an Xsens MVN – Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. In my presentation I will be displaying and discussing a selected creative works from the project along with the process and considerations behind the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-[kappa]2P,P']di­iodido­nickel(II), [NiI2(C18H40P2] or (dtbpe-[kappa]2P)NiI2, [dtbpe is 1,2-bis­(di-tert-butyl­phosphan­yl)ethane], is bright blue-green in the solid state and in solution, but, contrary to the structure predicted for a blue or green nickel(II) bis­(phos­phine) complex, it is found to be close to square planar in the solid state. The solution structure is deduced to be similar, because the optical spectra measured in solution and in the solid state contain similar absorptions. In solution at room temperature, no 31P{1H} NMR resonance is observed, but the very small solid-state magnetic moment at temperatures down to 4 K indicates that the weak paramagnetism of this nickel(II) complex can be ascribed to temperature independent paramagnetism, and that the complex has no unpaired electrons. The red [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-[kappa]2P,P']di­chlorido­nickel(II), [NiCl2(C18H40P2] or (dtbpe-[kappa]2P)NiCl2, is very close to square planar and very weakly paramagnetic in the solid state and in solution, while the maroon [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-[kappa]2P,P']di­bromido­nickel(II), [NiBr2(C18H40P2] or (dtbpe-[kappa]2P)NiBr2, is isostructural with the diiodide in the solid state, and displays paramagnetism inter­mediate between that of the dichloride and the diiodide in the solid state and in solution. Density functional calculations demonstrate that distortion from an ideal square plane for these complexes occurs on a flat potential energy surface. The calculations reproduce the observed structures and colours, and explain the trends observed for these and similar complexes. Although theoretical investigation identified magnetic-dipole-allowed excitations that are characteristic for temperature-independent paramagnetism (TIP), theory predicts the mol­ecules to be diamagnetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the consistency of choices in two methods used to elicit risk preferences on an aggregate as well as on an individual level. We ask subjects to choose twice from a list of nine decisions between two lotteries, as introduced by Holt and Laury (2002, 2005) alternating with nine decisions using the budget approach introduced by Andreoni and Harbaugh (2009). We find that, while on an aggregate (subject pool) level the results are consistent, on an individual (within-subject) level, behaviour is far from consistent. Within each method as well as across methods we observe low (simple and rank) correlations.