300 resultados para Configuration géométique
A low-complexity flight controller for Unmanned Aircraft Systems with constrained control allocation
Resumo:
In this paper, we propose a framework for joint allocation and constrained control design of flight controllers for Unmanned Aircraft Systems (UAS). The actuator configuration is used to map actuator constraint set into the space of the aircraft generalised forces. By constraining the demanded generalised forces, we ensure that the allocation problem is always feasible; and therefore, it can be solved without constraints. This leads to an allocation problem that does not require on-line numerical optimisation. Furthermore, since the controller handles the constraints, and there is no need to implement heuristics to inform the controller about actuator saturation. The latter is fundamental for avoiding Pilot Induced Oscillations (PIO) in remotely operated UAS due to the rate limit on the aircraft control surfaces.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca 30-fold) These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s significantly enhancing the utility of OzID in high-throughput lipidomic protocols The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution U Am Soc Mass Spectrom 2010, 21, 1989-1999) (C) 2010 American Society for Mass Spectrometry
Resumo:
BACKGROUND Tissue engineering of patient-specific adipose tissue has the potential to revolutionize reconstructive surgery. Numerous models have been described for the production of adipose tissue with success in the short term, but little has been reported on the stability of this tissue-engineered fat beyond 4 months. METHODS A murine model of de novo adipogenesis producing a potentially transplantable adipose tissue flap within 4 to 6 weeks was developed in the authors' laboratory. In this study, the authors assess the ability of three-chamber (44-μl volume) configurations shown to be adipogenic in previous short-term studies (autograft, n = 8; open, n = 6; fat flap, n = 11) to maintain their tissue volume for up to 12 months in vivo, to determine the most adipogenic configuration in the long term. RESULTS Those chambers having the most contact with existing vascularized adipose tissue (open and fat flap groups) showed increased mean adipose tissue percentage (77 ± 5.6 percent and 81 ± 6.9 percent, respectively; p < 0.0007) and volume (12 ± 6.8 μl and 30 ± 14 μl, respectively; p < 0.025) when compared with short-term controls and greater adipose tissue volume than the autograft (sealed) chamber group (4.9 ± 5.8 μl; p = 0.0001) at 1 year. Inclusion of a vascularized fat flap within the chamber produced the best results, with new fat completely filling the chamber by 1 year. CONCLUSIONS These findings demonstrate that fat produced by tissue engineering is capable of maintaining its volume when the appropriate microenvironment is provided. This has important implications for the application of tissue-engineering techniques in humans.
Resumo:
Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.
Resumo:
This paper introduces a novel cage induction generator and presents a mathematical model, through which its behavior can be accurately predicted. The proposed generator system employs a three-phase cage induction machine and generates single-phase and constant-frequency electricity at varying rotor speeds without an intermediate inverter stage. The technique uses any one of the three stator phases of the machine as the excitation winding and the remaining two phases, which are connected in series, as the power winding. The two-series-connected-and-one-isolated (TSCAOI) phase winding configuration magnetically decouples the two sets of windings, enabling independent control. Electricity is generated through the power winding at both sub- and super-synchronous speeds with appropriate excitation to the isolated single winding at any frequency of generation. A dynamic mathematical model, which accurately predicts the behavior of the proposed generator, is also presented and implemented in MATLAB/Simulink. Experimental results of a 2-kW prototype generator under various operating conditions are presented, together with theoretical results, to demonstrate the viability of the TSCAOI power generation. The proposed generator is simple and capable of both storage and retrieval of energy through its excitation winding and is expected to be suitable for applications, such as small wind turbines and microhydro systems.
Resumo:
Bone sialoprotein (BSP), a secreted glycoprotein found in bone matrix, has been implicated in the formation of mammary microcalcifications and osteotropic metastasis of human breast cancer (HBC). BSP possesses an integrin-binding RGD (Arg-Gly-Asp) domain, which may promote interactions between HBC cells and bone extracellular matrix. Purified BSP, recombinant human BSP fragments and BSP-derived RGD peptides are shown to elicit migratory, adhesive, and proliferative responses in the MDA-MB-231 HBC cell line. Recombinant BSP fragment analysis localized a significant component of these activities to the RGD domain of the protein, and synthetic RGD peptides with BSP flanking sequences (BSPRGD) also conferred these responses. The fibronectin-derived RGD counterpart, GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro), could not support these cellular responses, emphasizing specificity of the BSP configuration. Although most of the proliferative and adhesive responses could be attributed to RGD interactions, these interactions were only partly responsible for the migrational responses. Experiments with integrin-blocking antibodies demonstrated that BSP-RGD-induced migration utilizes the αvβ3 vitronectin receptor, whereas adhesion and proliferation responses were αvβ5-mediated. Using fluorescence activated cell sorting, we selected two separate subpopulations of MDA-MB-231 cells enriched for αvβ3 or αvβ5 respectively. Although some expression of the alternate αv integrin was still retained, the αvβ5-enriched MDA-MB-231 cells showed enhanced proliferative and adhesive responses, whereas the αvβ3-enriched subpopulation was suppressed for proliferation and adhesion, but showed enhanced migratory responses to BSP-RGD. In addition, similar analysis of two other HBC cell lines showed less marked, but similar RGD-dependent trends in adhesion and proliferation to the BSP fragments. Collectively, these data demonstrate BSP effects on proliferative, migratory, and adhesive functions in HBC cells and that the RGD-mediated component differentially employs αvβ3 and αvβ5 integrin receptors.
Resumo:
An experiment was conducted to investigate the process of reasoning about directions in an egocentric space. Each participant walked through a corridor containing an angular turn ranging in size from 0° to 90°, in 15° increments. A direction was given to participants at the entrance of the corridor and they were asked to answer this direction at the end of this corridor. Considering the fact that participants had to reason the direction in the featureless corridor, two hypotheses were proposed: (i) reasoning about directions falls into qualitative reasoning by using a small number of coarse angular categories (four 90° categories or eight 45° categories: 90° categories consist of front, back, left, right; 45° categories consist of 90° categories and the four intermediates) that reference axes generate; (ii) reasoning about directions would be done by recalling the rotation angle from the traveling direction to the direction that participants tried to answer. In addition, the configuration of reference axes that participants employed was examined. Both hypotheses were supported, and the data designated that reference axes consisted of eight directions: a pair of orthogonal axes and diagonals.
Resumo:
In this paper we report findings of the first phase of an investigation, which explored the experience of learning amongst high-level managers, project leaders and visitors in QUT’s “Cube”. “The Cube” is a giant, interactive, multi-media display; an award-winning configuration that hosts several interactive projects. The research team worked with three groups of participants to understand the relationship between a) the learning experiences that were intended in the establishment phase; b) the learning experiences that were enacted through the design and implementation of specific projects; and c) the lived experiences of learning of visitors interacting with the system. We adopted phenomenography as a research approach, to understand variation in people’s understandings and lived experiences of learning in this environment. The project was conducted within the first twelve months of The Cube being open to visitors.
Resumo:
Highly effective (more than 99.9%) inactivation of a pathogenic fungus Candida albicans commonly found in oral, respiratory, digestive, and reproduction systems of a human body using atmospheric-pressure plasma jets sustained in He+ O2 gas mixtures is reported. The inactivation is demonstrated in two fungal culture configurations with open (Petri dish without a cover) and restricted access to the atmosphere (Petri dish with a cover) under specific experimental conditions. It is shown that the fungal inactivation is remarkably more effective in the second configuration. This observation is supported by the scanning and transmission electron microscopy of the fungi before and after the plasma treatment. The inactivation mechanism explains the experimental observations under different experimental conditions and is consistent with the reports by other authors. The results are promising for the development of advanced health care applications.
Resumo:
The development, operation, and applications of two configurations of an integrated plasma-aided nanofabrication facility (IPANF) comprising low-frequency inductively coupled plasma-assisted, low-pressure, multiple-target RF magnetron sputtering plasma source, are reported. The two configurations of the plasma source have different arrangements of the RF inductive coil: a conventional external flat spiral "pancake" coil and an in-house developed internal antenna comprising two orthogonal RF current sheets. The internal antenna configuration generates a "unidirectional" RF current that deeply penetrates into the plasma bulk and results in an excellent uniformity of the plasma over large areas and volumes. The IPANF has been employed for various applications, including low-temperature plasma-enhanced chemical vapor deposition of vertically aligned single-crystalline carbon nanotips, growth of ultra-high aspect ratio semiconductor nanowires, assembly of optoelectronically important Si, SiC, and Al1-xInxN quantum dots, and plasma-based synthesis of bioactive hydroxyapatite for orthopedic implants.
Resumo:
The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.
Resumo:
A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction.
Resumo:
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.
Resumo:
Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.