272 resultados para short-range ordering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention. Design: 16 obese men and women (41 ± 9 years; BMI 39 ± 6 kg/m2) were investigated in energy balance before, after and twice during a 12-week VLED (565–650 kcal/day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74-87%). Body composition was measured by deuterium dilution and DXA and resting metabolic rate (RMR) by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants: 9.45 kcal/gFM and 1.13 kcal/gFFM. Predicted weight loss was calculated from the energy deficit using the '7700 kcal/kg rule'. Results: Changes in weight (-18.6 ± 5.0 kg), FM (-15.5 ± 4.3 kg), and FFM (-3.1 ± 1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39 to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01) and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of predicted values. Conclusion: Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. While lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic down-regulation should not be discounted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Previous studies have found that high and cold temperatures increase the risk of childhood diarrhea. However, little is known about whether the within-day variation of temperature has any effect on childhood diarrhea. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear model was used to examine the relationship between diurnal temperature range and emergency department admissions for diarrhea among children under five years in Brisbane, from 1st January 2003 to 31st December 2009. Results There was a statistically significant relationship between diurnal temperature range and childhood diarrhea. The effect of diurnal temperature range on childhood diarrhea was the greatest at one day lag, with a 3% (95% confidence interval: 2%–5%) increase of emergency department admissions per 1°C increment of diurnal temperature range. Conclusion Within-day variation of temperature appeared to be a risk factor for childhood diarrhea. The incidence of childhood diarrhea may increase if climate variability increases as predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the association between temperament in Australian infants aged 2–7 months and feeding practices of their first-time mothers (n=698). Associations between feeding practices and beliefs (Infant Feeding Questionnaire) and infant temperament (easy-difficult continuous scale from the Short Temperament Scale for Infants) were tested using linear and binary logistic regression models adjusted for a comprehensive range of covariates. Mothers of infants with a more difficult temperament reported a lower awareness of infant cues, were more likely to use food to calm and reported high concern about overweight and underweight. The covariate maternal depression score largely mirrored these associations. Infant temperament may be an important variable to consider in future research on the prevention of childhood obesity. In practice, mothers of temperamentally difficult infants may need targeted feeding advice to minimise the adoption of undesirable feeding practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Exeter stem has a length of 150mm with offsets 37.5mm to 56mm. Shorter stems of lengths 95mm, 115mm and 125mm with offsets 35.5mm or less are available for patients with smaller femurs. Concern has been raised regarding the behaviour of the smaller implants. This paper analysed data from the Australian Orthopaedic Association National Joint Replacement Registry comparing survivorship of stems of offset 35.5mm or less with the standard stems of 37.5mm offset or greater. At seven years there was no significant difference in the Cumulative Percent Revision Rate in the short stems (3.4%, 95% CI 2.4-4.8%) compared with the standard length stems (3.5%, 95% CI 3.3-3.8%) despite its use in a greater proportion of potentially more difficult developmental dysplasia of the hip cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise offers the potential to improve circulation, wound healing outcomes, and functional and emotional wellbeing for adults experiencing venous leg ulceration. Individuals with chronic leg ulcers typically have multiple comorbidities such as arthritis, asthma, chronic obstructive airways disease, cardiac disease or neuromuscular disorders, which would also benefit from regular exercise. The aim of this review is to highlight the relationships between the calf muscle pump and venous return and range of ankle motion for adults with venous leg ulcers. The effect of exercise will also be considered in relation to the healing rates for adults experiencing venous leg ulceration. The findings suggest there is evidence that exercises which engage the calf muscle pump improve venous return. Ankle range of motion, which is crucial for complete activation of the calf muscle pump, can also be improved with simple, home-based exercise programs. However, observational studies still report that venous leg ulcer patients are less physically active than age-matched controls. Therefore, the behavioural reasons for not exercising must be considered. Only two studies, both underpowered, have assessed the effect of exercise on the healing rates of venous leg ulcers. In conclusion, exercise is feasible with this patient population. However, future studies with larger sample sizes are needed to provide stronger evidence to support the therapeutic benefit of exercise as an adjunct therapy in wound care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been calls for Malaysian local authorities to be more transparent and accountable in the discharge of their functional responsibilities. This study empirically evaluates the extent and quality of current performance reporting by local authorities. The disclosure of relevant information for discharging accountability obligations, as defined by a broad range of stakeholders, falls short of best practice. Therefore, the performance of Malaysian local authorities lacks transparency. The findings could assist in the development of more comprehensive guidelines for local authority reporting and raise awareness of information stakeholders expect to be reported in the context of accountability

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple choice (MC) examinations are frequently used for the summative assessment of large classes because of their ease of marking and their perceived objectivity. However, traditional MC formats usually lead to a surface approach to learning, and do not allow students to demonstrate the depth of their knowledge or understanding. For these reasons, we have trialled the incorporation of short answer (SA) questions into the final examination of two first year chemistry units, alongside MC questions. Students’ overall marks were expected to improve, because they were able to obtain partial marks for the SA questions. Although large differences in some individual students’ performance in the two sections of their examinations were observed, most students received a similar percentage mark for their MC as for their SA sections and the overall mean scores were unchanged. In-depth analysis of all responses to a specific question, which was used previously as a MC question and in a subsequent semester in SA format, indicates that the SA format can have weaknesses due to marking inconsistencies that are absent for MC questions. However, inclusion of SA questions improved student scores on the MC section in one examination, indicating that their inclusion may lead to different study habits and deeper learning. We conclude that questions asked in SA format must be carefully chosen in order to optimise the use of marking resources, both financial and human, and questions asked in MC format should be very carefully checked by people trained in writing MC questions. These results, in conjunction with an analysis of the different examination formats used in first year chemistry units, have shaped a recommendation on how to reliably and cost-effectively assess first year chemistry, while encouraging higher order learning outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there is a paucity of scientific support for the benefits of warm-up, athletes commonly warm up prior to activity with the intention of improving performance and reducing the incidence of injuries. The purpose of this study was to examine the role of warm-up intensity on both range of motion (ROM) and anaerobic performance. Nine males (age = 21.7 +/- 1.6 years, height = 1.77 +/- 0.04 m, weight = 80.2 +/- 6.8 kg, and VO2max = 60.4 +/- 5.4 ml/kg/min) completed four trials. Each trial consisted of hip, knee, and ankle ROM evaluation using an electronic inclinometer and an anaerobic capacity test on the treadmill (time to fatigue at 13 km/hr and 20% grade). Subjects underwent no warm-up or a warm-up of 15 minutes running at 60, 70 or 80% VO2max followed by a series of lower limb stretches. Intensity of warm-up had little effect on ROM, since ankle dorsiflexion and hip extension significantly increased in all warm-up conditions, hip flexion significantly increased only after the 80% VO2max warm-up, and knee flexion did not change after any warm-up. Heart rate and body temperature were significantly increased (p < 0.05) prior to anaerobic performance for each of the warm-up conditions, but anaerobic performance improved significantly only after warm-up at 60% VO2max (10%) and 70% VO2max (13%). A 15-minute warm-up at an intensity of 60-70% VO2max is therefore recommended to improve ROM and enhance subsequent anaerobic performance.