543 resultados para real world context
Resumo:
Accessibility to housing for low to moderate income groups in Australia has been experiencing a severe decline since 2001. On the supply side, the public sector has been reducing its commitment to the direct provision of public housing. Despite high demand for affordable housing, there has been limited supply generated by non-government housing providers. One possible solution to promote an increase in affordable housing supply, like other infrastructure, is through the development of multi-stakeholder partnerships and private financing. This research aims to identify current issues underlying decision-making criteria for building multi-stakeholder partnerships to deliver affordable housing projects. It also investigates strategies for minimising risk and ensuring the financial outcomes of these partnership arrangements. A mix of qualitative in-depth interviews and quantitative surveys has been used as the main method to explore stakeholder experiences regarding their involvement in partnership arrangements in the affordable housing sector in Queensland. Two sets of interviews were conducted following an exploratory pilot study: one set in 2003-2004 and the other in 2007-2008. There were nineteen respondents representing government, private and not-for-profit organisations in the first stage interviews and surveys. The second stage interviews were focussed on twenty-two housing providers in South East Queensland. Initial analyses have been conducted using thematic and statistical analyses. This study extends the use of existing decision making tools and combines the use of a Soft System Framework to analyse the ideal state questionnaires using qualitative thematic analysis. Soft System Methodology (SSM) has been used to analyse this unstructured complex problem by using systematic thinking to develop a conceptual model and carrying it to the real world situations to solve the problem. This research found that the diversity of stakeholder capability and their level of risk acceptance will allow partnerships to develop the best synergies and a degree of collaboration which achieves the required financial return within acceptable risk parameters. However, some of the negativity attached to future commitment to such partnerships has been found to be the anticipation of a worse outcome than that expected from independent action. Many interviewees agree that housing providers' fear of financial risk and community rejection has been central to dampening their enthusiasm for entering such investment projects. The creation of a mixed-use development structure will mitigate both risk and return as the commercial income will subsidise the affordable housing development and will normalise concentration of marginalised low-income people who live in a prime location with an award winning design. In addition, tenant support schemes and rent-to-buy incentive programs will encourage them to secure their tenancies and significantly reduce the risk of rent arrears and property damage. There is also a breakthrough investment vehicle offered by the social developer which sells the non-physical but financial product to individual and institutional investors to mitigate further financial risk. Finally, this study recommends modification of the current value-for-money framework in favour of broader partnership arrangements which are more closely aligned with risk minimisation strategies.
Resumo:
This paper outlines how the Ortelia project’s 3D virtual reality models have the capacity to assist our understanding of sites of cultural heritage. The VR investigation of such spaces can be a valuable tool in 'real world' empirical research in theatre and spatiality. Through a demonstration of two of Ortelia's VR models (an art gallery and a theatre), we suggest how we might consider interpreting cultural space and sites as contributing significantly to cultural capital. We also introduce the potential for human interaction in such venues through motion-capture to discuss the potential for assessing how humans interact in such contexts.
Resumo:
A recent study in the United Kingdom (Ofsted Report 2008) provides strong evidence that well-organized activities outside the classroom contribute significantly to the quality and depth of children's learning, including their personal, social, and emotional development. Outdoor math trails supply further evidence of such enhanced learning: They are meaningful, stimulating, challenging, and exciting for children. Most important, these trails invite all students, irrespective of their classroom achievement level, to participate successfully in the problem activities and gain a sense of pride in the mathematics they create. Additionally, Math trails empower lifelong learning. Integrating "outside" mathematics with "inside" classroom mathematics can sow the seeds to develop flexible, creative, future-oriented mathematical thinkers and problem solvers. Here, English et al discuss how to design and implement math trails to promote active, meaningful, real-world mathematical learning beyond the classroom walls.
Resumo:
Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them actually being used. After all, what is not understood cannot be acted upon. Yet until now, understandability has primarily been defined as an intrinsic quality of the models themselves. Moreover, those studies that looked at understandability from a user perspective have mainly conceptualized users through rather arbitrary sets of variables. In this paper we advance an integrative framework to understand the role of the user in the process of understanding process models. Building on cognitive psychology, goal-setting theory and multimedia learning theory, we identify three stages of learning required to realize model understanding, these being Presage, Process, and Product. We define eight relevant user characteristics in the Presage stage of learning, three knowledge construction variables in the Process stage and three potential learning outcomes in the Product stage. To illustrate the benefits of the framework, we review existing process modeling work to identify where our framework can complement and extend existing studies.
Resumo:
Teaching and learning in working groups is a challenge to both teacher and student. Collaboration is an elusive concept, difficult to teach, impossible to enforce, yet the ability to work in this way is an essential characteristic of any Creative Industries professional. In 2006, a group of creative industries students were charged with the task of collaboratively creating a performance as part of their coursework. This research project closely followed their development as agents of collaborative creativity using an innovative methodology which combined performance and documentary making. The result is COLLABORATORY - a DVD documentary isolating key behaviours and features of collaborative learning: Convergence and divergence of ideas, Characters and behaviours in collaboration, Leadership and facilitation, Motivation and Intersubjectivity. An engaging presentation of theory and practice capturing what Meill and Littleton (2004) call “the emotional dance of collaboration”.
Resumo:
In teaching introductory economics there has been a tendency to put a lot of emphasis on imparting abstract models and technical skills to students (Stilwell, 2005; Voss, Blais, Greens, & Ahwesh, 1986). This model building approach has the merit of preparing the grounding for students 10 pursue further studies in economics. However, in a business degree with only a small proportion of students majoring in economics, such an approach tend to alienate the majority of students transiting from high school in to university. Surveys in Europe and Australia found that students complained about the lack of relevance of economics courses to the real world and the over-reliance of abstract mathematical modelling (Kirman, 2001; Lewis and Norris, 1997; Siegfried & Round, 2000). BSB112 Economics 1 is one of the eight faculty core units in the Faculty of Business at QUT, with over 1000 students in each semester. In semester I 2008, a new approach to teaching this unit was designed aiming to achieve three inter-related objectives: (1) to provide business students with a first insight into economic thinking and language, (2) to integrate economic analysis with current Australian social, environmental and political issues, and (3) to cater for students with a wide range of academic needs. Strategies used to achieve these objectives included writing up a new text which departs from traditional economics textbooks in important ways, integrating students' cultures in teaching and learning activities, and devising a new assessment format to encourage development of research skills and applications rather than reproduction of factual knowledge. This paper will document the strategies used in this teaching innovation, present quantitative and qualitative evidence to evaluate this new approach and suggest ways of further improvement.
Resumo:
Is there a role for prototyping (sketching, pattern making and sampling) in addressing real world problems of sustainability (People, Profit, and Planet), in this case social/healthcare issues, through fashion and textiles research? Skin cancer and related illnesses are a major cause of disfigurement and death in New Zealand and Australia where the rates of Melanoma, a serious form of skin cancer, are four times higher than in the Northern Hemisphere regions of USA, UK and Canada (IARC, 1992). In 2007, AUT University (Auckland University of Technology) Fashion Department and the Health Promotion Department of Cancer Society - Auckland Division (CSA) developed a prototype hat aimed at exploring a barrier type solution to prevent facial and neck skin damage. This is a paradigm shift from the usual medical research model. This paper provides an overview of the project and examines how a fashion prototype has been used to communicate emergent social, environmental, personal, physiological and technological concerns to the trans-disciplinary research team. The authors consider how the design of a product can enhance and support sustainable design practice while contributing a potential solution to an ongoing health issue. Analysis of this case study provides an insight into prototyping in fashion and textiles design, user engagement and the importance of requirements analysis in relation to sustainable development. The analysis and a successful outcome of the final prototype have provided a gateway to future collaborative research and product development.
Resumo:
The programming and retasking of sensor nodes could benefit greatly from the use of a virtual machine (VM) since byte code is compact, can be loaded on demand, and interpreted on a heterogeneous set of devices. The challenge is to ensure good programming tools and a small footprint for the virtual machine to meet the memory constraints of typical WSN platforms. To this end we propose Darjeeling, a virtual machine modelled after the Java VM and capable of executing a substantial subset of the Java language, but designed specifically to run on 8- and 16-bit microcontrollers with 2 - 10 KB of RAM. The Darjeeling VM uses a 16- rather than a 32-bit architecture, which is more efficient on the targeted platforms. Darjeeling features a novel memory organisation with strict separation of reference from non-reference types which eliminates the need for run-time type inspection in the underlying compacting garbage collector. Darjeeling uses a linked stack model that provides light-weight threads, and supports synchronisation. The VM has been implemented on three different platforms and was evaluated with micro benchmarks and a real-world application. The latter includes a pure Java implementation of the collection tree routing protocol conveniently programmed as a set of cooperating threads, and a reimplementation of an existing environmental monitoring application. The results show that Darjeeling is a viable solution for deploying large-scale heterogeneous sensor networks. Copyright 2009 ACM.
Resumo:
RatSLAM is a system for vision-based Simultaneous Localisation and Mapping (SLAM) inspired by models of the rodent hippocampus. The system can produce stable representations of large complex environments during robot experiments in both indoor and outdoor environments. These representations are both topological and metric in nature, and can involve multiple representations of the same place as well as discontinuities. In this paper we describe a new technique known as experience mapping that can be used online with the RatSLAM system to produce world representations known as experience maps. These maps group together multiple place representations and are spatially continuous. A number of experiments have been conducted in simulation and a real world office environment. These experiments demonstrate the high degree to which experience maps are representative of the spatial arrangement of the environment.
Resumo:
The RatSLAM system can perform vision based SLAM using a computational model of the rodent hippocampus. When the number of pose cells used to represent space in RatSLAM is reduced, artifacts are introduced that hinder its use for goal directed navigation. This paper describes a new component for the RatSLAM system called an experience map, which provides a coherent representation for goal directed navigation. Results are presented for two sets of real world experiments, including comparison with the original goal memory system's performance in the same environment. Preliminary results are also presented demonstrating the ability of the experience map to adapt to simple short term changes in the environment.
Resumo:
RatSLAM is a system for vision based Simultaneous Localization and Mapping (SLAM) that has been shown to be capable of building stable representations of real world environments. In this paper we describe a method for using RatSLAM representations as the basis for navigation to designated goal locations. The method uses a new component, goal memory, to learn the temporal gradient between places. Paths are recalled or inferred from the goal memory by following the temporal gradient from the robot’s current position to the goal location. Experimental results have been gathered in a combined office and laboratory environment using a Pioneer robot. The experiments show that the robot can perform vision based SLAM on-line and in real time, and then use those representations immediately to navigate directly to designated goal locations.
Resumo:
This paper presents an Airborne Systems Laboratory for Automation Research. The Airborne Systems Laboratory (ASL) is a Cessna 172 aircraft that has been specially modified and equipped by ARCAA specifically for research in future aircraft automation technologies, including Unmanned Airborne Systems (UAS). This capability has been developed over a long period of time, initially through the hire of aircraft, and finally through the purchase and modification of a dedicated flight-testing capability. The ASL has been equipped with a payload system that includes the provision of secure mounting, power, aircraft state data, flight management system and real-time subsystem. Finally, this system has been deployed in a cost effective platform allowing real-world flight-testing on a range of projects.
Resumo:
Acoustically, car cabins are extremely noisy and as a consequence, existing audio-only speech recognition systems, for voice-based control of vehicle functions such as the GPS based navigator, perform poorly. Audio-only speech recognition systems fail to make use of the visual modality of speech (eg: lip movements). As the visual modality is immune to acoustic noise, utilising this visual information in conjunction with an audio only speech recognition system has the potential to improve the accuracy of the system. The field of recognising speech using both auditory and visual inputs is known as Audio Visual Speech Recognition (AVSR). Continuous research in AVASR field has been ongoing for the past twenty-five years with notable progress being made. However, the practical deployment of AVASR systems for use in a variety of real-world applications has not yet emerged. The main reason is due to most research to date neglecting to address variabilities in the visual domain such as illumination and viewpoint in the design of the visual front-end of the AVSR system. In this paper we present an AVASR system in a real-world car environment using the AVICAR database [1], which is publicly available in-car database and we show that the use of visual speech conjunction with the audio modality is a better approach to improve the robustness and effectiveness of voice-only recognition systems in car cabin environments.
Resumo:
In the past few years, numerous data collection protocols have been developed for wireless sensor networks (WSNs). However, there has been no comparison of their relative performance in realistic environments. Here we report the results of an empirical study using a Fleck3 sensor network testbed for four different data collection protocols: One phase pull Directed Diffusion (DD), Expected Number of Transmissions (ETX), ETX with explicit acknowledgment (ETX-eAck), and ETX with implicit acknowledgment (ETX-iAck). Our empirical study provides useful insights for future sensor network deployments. When the required application end-to-end reliability is not strict (e.g., 70%) and link quality is good, DD and ETX are the best options because of their simplicity and low routing overhead. Both ETX-eAck and ETX-iAck achieve more than 90% end-to-end reliability when the link quality is reasonable (less than 25% packet loss). When the link quality is good, ETX-iAck introduces significantly less routing overhead (up to 50%) than ETX-eAck. However, if the radio transceiver supports variable packet length, ETX-eAck can outperform ETX-iAck when the link quality is poor. The important message from this paper is that choice of data collection protocol should come after the operating environment is understood. This understanding must include the characteristics of the radio transceiver, and link loss statistics from a long-term (across seasons and weather variation) radio survey of the site.
Resumo:
The 5th International Conference on Field and Service Robotics (FSR05) was held in Port Douglas, Australia, on 29th - 31st July 2005, and brought together the worlds' leading experts in field and service automation. The goal of the conference was to report and encourage the latest research and practical results towards the use of field and service robotics in the community with particular focus on proven technology. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. Field robots are robots which operate in outdoor, complex, and dynamic environments. Service robots are those that work closely with humans, with particular applications involving indoor and structured environments. There are a wide range of topics presented in this issue on field and service robots including: Agricultural and Forestry Robotics, Mining and Exploration Robots, Robots for Construction, Security & Defence Robots, Cleaning Robots, Autonomous Underwater Vehicles and Autonomous Flying Robots. This meeting was the fifth in the series and brings FSR back to Australia where it was first held. FSR has been held every 2 years, starting with Canberra 1997, followed by Pittsburgh 1999, Helsinki 2001 and Lake Yamanaka 2003.