237 resultados para motion-based driving simulator
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.
Resumo:
Background: Exercise and adequate self-management capacity may be important strategies in the management of venous leg ulcers. However, it remains unclear if exercise improves the healing rates of venous leg ulcers and if a self-management exercise program based on self-efficacy theory is well adhered to. Method/Design: This is a randomised controlled in adults with venous leg ulcers to determine the effectiveness of a self-efficacy based exercise intervention. Participants with venous leg ulcers are recruited from 3 clinical sites in Australia. After collection of baseline data, participants are randomised to either an intervention group or control group. The control group receive usual care, as recommended by evidence based guidelines. The intervention group receive an individualised program of calf muscle exercises and walking. The twelve week exercise program integrates multiple elements, including up to six telephone delivered behavioural coaching and goal setting sessions, supported by written materials, a pedometer and two follow-up booster calls if required. Participants are encouraged to seek social support among their friends, self-monitor their weekly steps and lower limb exercises. The control group are supported by a generic information sheet that the intervention group also receive encouraging lower limb exercises, a pedometer for self-management and phone calls at the same time points as the intervention group. The primary outcome is the healing rates of venous leg ulcers which are assessed at fortnightly clinic appointments. Secondary outcomes, assessed at baseline and 12 weeks: functional ability (range of ankle motion and Tinetti gait and balance score), quality of life and self-management scores. Discussion: This study seeks to address a significant gap in current wound management practice by providing evidence for the effectiveness of a home-based exercise program for adults with venous leg ulcers. Theory-driven, evidence-based strategies that can improve an individual’s exercise self-efficacy and self-management capacity could have a significant impact in improving the management of people with venous leg ulcers. Information gained from this study will provide much needed information on management of this chronic disease to promote health and independence in this population. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12612000475842 Trial status: Current follow up
Resumo:
The use of gyro-dynamic forces to counteract the wave-induced roll motion of marine vessels in a seaway was proposed over 100 years ago. These early systems showed a remarkable performance, reporting roll reductions of up to 95% in some sailing conditions. Despite this success, further developments were not pursued since the systems were unable to provide acceptable performance over an extended envelope of sailing and environmental conditions, and the invention of fin roll stabilisers provided a satisfactory alternative. This has been attributed to simplistic controls, heavy drive systems, and large structural mass required to withstand the loads given the low strength materials available at the time. Today, advances in material strength, bearings, motor technology and mechanical design methods, together with powerful signal processing algorithms, has resulted in a revitalized interest in gyro-stabilisers for ships. Advanced control systems have enabled optimisation of restoring torques across a range of wave environments and sailing conditions through adaptive control system design. All of these improvements have resulted in increased spinning speed, lower mass, and dramatically increased stabilising performance. This brief paper provides an overview of recent developments in the design and control of gyro-stabilisers of ship roll motion. In particular, the novel Halcyon Gyro-Stabilisers are introduced, and their performance is illustrated based on a simulation case study for a naval patrol vessel. Given the growing national and global interest in small combatants and patrol vessels, modem gyro-stabilisers may offer a significant technological contribution to the age old problem of comfort and mission operability on small ships, especially at loiter speeds.
Resumo:
This paper proposes a physically motivated reappraisal of manoeuvring models for ships and presents a new model developed from first principles by application of low aspect-ratio aerodynamic theory and Lagrangian mechanics. The coefficients of the model are shown to be related to physical processes, and validation is presented using the results from a planar motion mechanism dataset.
Resumo:
This paper deals with constrained image-based visual servoing of circular and conical spiral motion about an unknown object approximating a single image point feature. Effective visual control of such trajectories has many applications for small unmanned aerial vehicles, including surveillance and inspection, forced landing (homing), and collision avoidance. A spherical camera model is used to derive a novel visual-predictive controller (VPC) using stability-based design methods for general nonlinear model-predictive control. In particular, a quasi-infinite horizon visual-predictive control scheme is derived. A terminal region, which is used as a constraint in the controller structure, can be used to guide appropriate reference image features for spiral tracking with respect to nominal stability and feasibility. Robustness properties are also discussed with respect to parameter uncertainty and additive noise. A comparison with competing visual-predictive control schemes is made, and some experimental results using a small quad rotor platform are given.
Deterrence of drug driving : the impact of the ACT drug driving legislation and detection techniques
Resumo:
Overarching Research Questions Are ACT motorists aware of roadside saliva based drug testing operations? What is the perceived deterrent impact of the operations? What factors are predictive of future intentions to drug drive? What are the differences between key subgroups
Resumo:
Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.
Resumo:
Purpose Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Methods Participants included 61 regular drivers (age range 22–87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. Results In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. Conclusions The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways.
Resumo:
Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques.
Resumo:
Objective: Individuals with chronic whiplash-associated disorders (WADs) often note driving as a difficult task. This study’s aims were to (1) compare, while driving, neck motor performance, mental effort, and fatigue in individuals with chronic WAD against healthy controls and (2) investigate the relationships of these variables and neck pain to self-reported driving difficulty in the WAD group. Design: This study involved 14 participants in each group (WAD and control). Measures included self-reported driving difficulty and measures of neck pain intensity, overall fatigue, mental effort, and neck motor performance (head rotation and upper trapezius activity) while driving a simulator. Results: The WAD group had greater absolute path of head rotation in a simulated city area and used greater mental effort (P = 0.04), but there were no differences in other measures while driving compared with the controls (all P Q 0.05). Self-reported driving difficulty correlated moderately with neck pain intensity, fatigue level, and maximum velocity of head rotation while driving in the WAD group (all P G 0.05). Conclusions: Individuals with chronic WAD do not seem to have impaired neck motor performance while driving yet use greater mental effort. Neck pain, fatigue, and maximum head rotation velocity could be potential contributors to self-reported driving difficulty in this group.
Resumo:
Background Drink driving remains an important issue to address in terms of health and injury prevention even though research shows that over time there has been a steady decline in drink driving. This has been attributed to the introduction of countermeasures such as random breath testing (RBT), changing community attitudes and norms leading to less acceptance of the behaviour and, to a lesser degree, the implementation of programs designed to deter offenders from engaging in drink driving. Most of the research to date has focused on the hard core offenders - those with high blood alcohol content at the time of arrest, and those who have more than one offence. Aims There has been little research on differences within the first offender population or on factors contributing to second offences. This research aims to fill the gap by reporting on those factors in a sample of offenders. Methods This paper reports on a study that involved interviewing 198 first offenders in court and following up this group 6-8 months post offence. Of these original participants, 101 offenders were able to be followed up, with 88 included in this paper on the basis that they had driven a vehicle since the offence. Results Interestingly, while the rate of reported apprehended second offences was low in that time frame (3%), a surprising number of offenders reported that they had driven under the influence at a much higher rate (27%). That is a large proportion of first offenders were willing to risk the much larger penalties associated with a second offence in order to engage in drink driving. Discussion and conclusions Key characteristics of this follow up group are examined to inform the development of a evidence based brief intervention program that targets first time offenders with the goal of decreasing the rate of repeat drink driving.
Resumo:
Driver cognitions about aggressive driving of others are potentially important to the development of evidence-based interventions. Previous research has suggested that perceptions that other drivers are intentionally aggressive may influence recipient driver anger and subsequent aggressive responses. Accordingly, recent research on aggressive driving has attempted to distinguish between intentional and unintentional motives in relation to problem driving behaviours. This study assessed driver cognitive responses to common potentially provocative hypothetical driving scenarios to explore the role of attributions in driver aggression. A convenience sample of 315 general drivers 16–64 yrs (M = 34) completed a survey measuring trait aggression (Aggression Questionnaire AQ), driving anger (Driving Anger Scale, DAS), and a proxy measure of aggressive driving behaviour (Australian Propensity for Angry Driving AusPADS). Purpose designed items asked for drivers’ ‘most likely’ thought in response to AusPADS scenarios. Response options were equivalent to causal attributions about the other driver. Patterns in endorsements of attribution responses to the scenarios suggested that drivers tended to adopt a particular perception of the driving of others regardless of the depicted circumstances: a driving attributional style. No gender or age differences were found for attributional style. Significant differences were detected between attributional styles for driving anger and endorsement of aggressive responses to driving situations. Drivers who attributed the on-road event to the other being an incompetent or dangerous driver had significantly higher driving anger scores and endorsed significantly more aggressive driving responses than those drivers who attributed other driver’s behaviour to mistakes. In contrast, drivers who gave others the ‘benefit of the doubt’ endorsed significantly less aggressive driving responses than either of these other two groups, suggesting that this style is protective.
Resumo:
Process improvement and innovation are risky endeavors, like swimming in unknown waters. In this chapter, I will discuss how process innovation through BPM can benefit from Research-as-a-Service, that is, from the application of research concepts in the processes of BPM projects. A further subject will be how innovations can be converted from confidence-based to evidence-based models due to affordances of digital infrastructures such as large-scale enterprise soft-ware or social media. I will introduce the relevant concepts, provide illustrations for digital capabilities that allow for innovation, and share a number of key takeaway lessons for how organizations can innovate on the basis of digital opportunities and principles of evidence-based BPM: the foundation of all process decisions in facts rather than fiction.
Resumo:
Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.
Resumo:
The demand for an evidence-based clinical practice involving lower limb amputees is increasing. Some of the critical care decisions are related to the loading applied on the residuum partially responsible for comfort and functional outcome. This loading can be assessed using inverse dynamics equations. Typically, this method requires a gait laboratory (e.g., 3D motion analysis system, force-plates). It is mainly suited for the analysis only few steps of walking while being expensive and labour intensive. However, recent scientific and industrial developments demonstrated that discrete and light portable sensors can be placed within the prosthesis to measure accurately the loading during an unlimited number of steps and activities of daily living. Several studies indicated that method based on direct measurements might provide more realistic results. Furthermore, it is a user-friendly method more accessible to clinicians, such as prosthetists. The purpose of this symposium will be to give an overview of these additional opportunities for clinicians to obtain relevant data for evidence-based practice. The three main aims will be: • To present some of the equipment used for direct measurements, • To propose ways to analyse some key data sets, • To give some practical example of data sets for transtibial and transfemoral amputees.