224 resultados para legal problem solving
Resumo:
Problem solving is an essential element of civil engineering education. It has been I observed that students are best able to understand civil engineering theory when there is a ' practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and "drop-out". This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest I most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.
Resumo:
Problem solving is an essential element of civil engineering education. It has been observed that students are best able to understand civil engineering theory when there is a practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and “drop-out”. This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest / most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.
Resumo:
Final report for the Australian Government Office for Learning and Teaching. "This seed project ‘Design thinking frameworks as transformative cross-disciplinary pedagogy’ aimed to examine the way design thinking strategies are used across disciplines to scaffold the development of student attributes in the domain of problem solving and creativity in order to enhance the nation’s capacity for innovation. Generic graduate attributes associated with innovation, creativity and problem solving are considered to be amongst the most important of all targeted attributes (Bradley Review of Higher Education, 2009). The project also aimed to gather data on how academics across disciplines conceptualised design thinking methodologies and strategies. Insights into how design thinking strategies could be embedded at the subject level to improve student outcomes were of particular interest in this regard. A related aim was the investigation of how design thinking strategies could be used by academics when designing new and innovative subjects and courses." Case Study 3: QUT Community Engaged Learning Lab Design Thinking/Design Led Innovation Workshop by Natalie Wright Context "The author, from the discipline area of Interior Design in the QUT School of Design, Faculty of Creative Industries, is a contributing academic and tutor for The Community Engaged Learning Lab, which was initiated at Queensland University of Technology in 2012. The Lab facilitates university-wide service-learning experiences and engages students, academics, and key community organisations in interdisciplinary action research projects to support student learning and to explore complex and ongoing problems nominated by the community partners. In Week 3, Semester One 2013, with the assistance of co-lead Dr Cara Wrigley, Senior Lecturer in Design led Innovation, a Masters of Architecture research student and nine participating industry-embedded Masters of Research (Design led Innovation) facilitators, a Design Thinking/Design led Innovation workshop was conducted for the Community Engaged Learning Lab students, and action research outcomes published at 2013 Tsinghua International Design Management Symposium, December 2013 in Shenzhen, China (Morehen, Wright, & Wrigley, 2013)."
Resumo:
Game playing contributes to the acquisition of required skills and competencies whilst supporting collaboration, communication and problem solving. This project introduced the board game Monopoly CityTM to tie theoretical class room learning with collaborative, play based problem solving.
Resumo:
This paper reports on the development of a playful digital experience, Anim-action, designed for young children with developmental disabilities. This experience was built using the Stomp platform, a technology designed specifically to meet the needs of people with intellectual disability through facilitating whole body interaction. We provide detail on how knowledge gained from key stakeholders informed the design of the application and describe the design guidelines used in the development process. A study involving 13 young children with developmental disabilities was conducted to evaluate the extent to which Anim-action facilitates cognitive, social and physical activity. Results demonstrated that Anim-action effectively supports cognitive and physical activity. In particular, it promoted autonomy and encouraged problem solving and motor planning. Conversely, there were limitations in the system’s ability to support social interaction, in particular, cooperation. Results have been analyzed to determine how design guidelines might be refined to address these limitations.
Resumo:
Many nations are highlighting the need for a renaissance in the mathematical sciences as essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; 2010; The National Academies, 2009). Indeed, the first recommendation of The National Academies’ Rising Above the Storm (2007) was to vastly improve K–12 science and mathematics education. The subsequent report, Rising Above the Gathering Storm Two Years Later (2009), highlighted again the need to target mathematics and science from the earliest years of schooling: “It takes years or decades to build the capability to have a society that depends on science and technology . . . You need to generate the scientists and engineers, starting in elementary and middle school” (p. 9). Such pleas reflect the rapidly changing nature of problem solving and reasoning needed in today’s world, beyond the classroom. As The National Academies (2009) reported, “Today the problems are more complex than they were in the 1950s, and more global. They’ll require a new educated workforce, one that is more open, collaborative, and cross-disciplinary” (p. 19). The implications for the problem solving experiences we implement in schools are far-reaching. In this chapter, I consider problem solving and modelling in the primary school, beginning with the need to rethink the experiences we provide in the early years. I argue for a greater awareness of the learning potential of young children and the need to provide stimulating learning environments. I then focus on data modelling as a powerful means of advancing children’s statistical reasoning abilities, which they increasingly need as they navigate their data-drenched world.
Resumo:
With the increasing competitiveness in global markets, many developing nations are striving to constantly improve their services in search for the next competitive edge. As a result, the demand and need for Business Process Management (BPM) in these regions is seeing a rapid rise. Yet there exists a lack of professional expertise and knowledge to cater to that need. Therefore, the development of well-structured BPM training/ education programs has become an urgent requirement for these industries. Furthermore, the lack of textbooks or other self-educating material, that go beyond the basics of BPM, further ratifies the need for case based teaching and related cases that enable the next generation of professionals in these countries. Teaching cases create an authentic learning environment where complexities and challenges of the ‘real world’ can be presented in a narrative, enabling students to evolve crucial skills such as problem analysis, problem solving, creativity within constraints as well as the application of appropriate tools (BPMN) and techniques (including best practices and benchmarking) within richer and real scenarios. The aim of this paper is to provide a comprehensive teaching case demonstrating the means to tackle any developing nation’s legacy government process undermined by inefficiency and ineffectiveness. The paper also includes thorough teaching notes The article is presented in three main parts: (i) Introduction - that provides a brief background setting the context of this paper, (ii) The Teaching Case, and (iii) Teaching notes.
Resumo:
In this Primer, our aims are to explain what statutory interpretation is and why it is important. We also aim to note some of the more difficult concepts and ideas you will need to understand when reading a statute, when deciding if it is relevant to a legal problem, and, if so, how it applies to that problem. We do not aim to provide an overview of the rules of Statutory Interpretation, but only to focus on areas that have created well-known difficulties for students and practitioners alike, such as the concept of the intentions of Parliament and the correct use of intrinsic materials.
Resumo:
Science, technology, engineering, and mathematics (STEM) education is an emerging initiative in Australia, particularly in primary schools. This qualitative research aimed to understand Year 4 students' involvement in an integrated STEM education unit that focused on science concepts (e.g., states of matter, testing properties of materials) and mathematics concepts (e.g., 3D shapes and metric measurements) for designing, making and testing a strong and safe medical kit to insulate medicines (ice cubes) at desirable temperatures. Data collection tools included student work samples, photographs, written responses from students and the teacher, and researcher notes. In a post-hoc analysis, a pedagogical knowledge practice framework (i.e., planning, timetabling, preparation, teaching strategies, content knowledge, problem solving, classroom management, questioning, implementation, assessment, and viewpoints) was used to explain links to student outcomes in STEM education. The study showed how pedagogical knowledge practices may be linked to student outcomes (knowledge, understanding, skill development, and values and attitudes) for a STEM education activity.
Resumo:
This paper outlines the results from a study into the educational use of the board game Monopoly City™ in a first year real estate unit. This game play was introduced as a fun and interactive way of achieving a number of desired outcomes including: introduction of foundational threshold concepts in real estate education; introduction of problem solving and critical analysis skills; early acculturation of real estate students to enhance student retention; early team building within the student cohort; and enhanced engagement of first year students and, all in an engaging and entertaining way. Results from this two-stage research project are encouraging. The students participating in this project have demonstrated explicit linkages between their Monopoly City™ experiences and foundation urban economic and valuation theories. Students are also recognising the role strategy and chance play in the real estate sector. Findings from this project and key success factors are presented.
Resumo:
Without question a child’s death is a devastating event for parents and their families. Health professionals working with the dying child and family draw upon their expertise and experience to engage with children, parents, and families on this painful journey. A delicate and sensitive area of practice, it has strong and penetrating effects on health professionals. They employ physical, emotional, spiritual and problem solving strategies to continue to perform this role effectively and to protect their continued sense of well-being. Aim To explore health professionals’ perceptions of bereavement support surrounding the loss of a child. Methods The research was underpinned by social constructionism. Semi-structured interviews were held with 10 health professionals including doctors, nurses and social workers who were directly involved in the care of the dying child and family in 7 cases of paediatric death. Health professional narratives were analysed consistent with Charmarz’s (2006) approach. Results For health professionals, constructions around coping emerged as peer support, personal coping strategies, family support, physical impact of support and spiritual beliefs . Analysis of the narratives also revealed health professionals’ perceptions of their support provision. Conclusion Health professionals involved in caring for dying children and their families use a variety of strategies to cope with the emotional and physical toll of providing support. They also engage in self-assessment to evaluate their support provision and this highlights the need for self-evaluation tools in paediatric palliative care.
Resumo:
Background Comparison of a multimodal intervention WE CALL (study initiated phone support/information provision) versus a passive intervention YOU CALL (participant can contact a resource person) in individuals with first mild stroke. Methods and Results This study is a single-blinded randomized clinical trial. Primary outcome includes unplanned use of health services (participant diaries) for adverse events and quality of life (Euroquol-5D, Quality of Life Index). Secondary outcomes include planned use of health services (diaries), mood (Beck Depression Inventory II), and participation (Assessment of Life Habits [LIFE-H]). Blind assessments were done at baseline, 6, and 12 months. A mixed model approach for statistical analysis on an intention-to-treat basis was used where the group factor was intervention type and occasion factor time, with a significance level of 0.01. We enrolled 186 patients (WE=92; YOU=94) with a mean age of 62.5±12.5 years, and 42.5% were women. No significant differences were seen between groups at 6 months for any outcomes with both groups improving from baseline on all measures (effect sizes ranged from 0.25 to 0.7). The only significant change for both groups from 6 months to 1 year (n=139) was in the social domains of the LIFE-H (increment in score, 0.4/9±1.3 [95% confidence interval, 0.1–0.7]; effect size, 0.3). Qualitatively, the WE CALL intervention was perceived as reassuring, increased insight, and problem solving while decreasing anxiety. Only 6 of 94 (6.4%) YOU CALL participants availed themselves of the intervention. Conclusions Although the 2 groups improved equally over time, WE CALL intervention was perceived as helpful, whereas YOU CALL intervention was not used.
Resumo:
Background More than 60% of new strokes each year are "mild" in severity and this proportion is expected to rise in the years to come. Within our current health care system those with "mild" stroke are typically discharged home within days, without further referral to health or rehabilitation services other than advice to see their family physician. Those with mild stroke often have limited access to support from health professionals with stroke-specific knowledge who would typically provide critical information on topics such as secondary stroke prevention, community reintegration, medication counselling and problem solving with regard to specific concerns that arise. Isolation and lack of knowledge may lead to a worsening of health problems including stroke recurrence and unnecessary and costly health care utilization. The purpose of this study is to assess the effectiveness, for individuals who experience a first "mild" stroke, of a sustainable, low cost, multimodal support intervention (comprising information, education and telephone support) - "WE CALL" compared to a passive intervention (providing the name and phone number of a resource person available if they feel the need to) - "YOU CALL", on two primary outcomes: unplanned-use of health services for negative events and quality of life. Method/Design We will recruit 384 adults who meet inclusion criteria for a first mild stroke across six Canadian sites. Baseline measures will be taken within the first month after stroke onset. Participants will be stratified according to comorbidity level and randomised to one of two groups: YOU CALL or WE CALL. Both interventions will be offered over a six months period. Primary outcomes include unplanned use of heath services for negative event (frequency calendar) and quality of life (EQ-5D and Quality of Life Index). Secondary outcomes include participation level (LIFE-H), depression (Beck Depression Inventory II) and use of health services for health promotion or prevention (frequency calendar). Blind assessors will gather data at mid-intervention, end of intervention and one year follow up. Discussion If effective, this multimodal intervention could be delivered in both urban and rural environments. For example, existing infrastructure such as regional stroke centers and existing secondary stroke prevention clinics, make this intervention, if effective, deliverable and sustainable.
Resumo:
This cross-sectional study assessed intellect, cognition, academic function, behaviour, and emotional health of long-term survivors after childhood liver transplantation. Eligible children were >5 yr post-transplant, still attending school, and resident in Queensland. Hearing and neurocognitive testing were performed on 13 transplanted children and six siblings including two twin pairs where one was transplanted and the other not. Median age at testing was 13.08 (range 6.52-16.99) yr; time elapsed after transplant 10.89 (range 5.16-16.37) yr; and age at transplant 1.15 (range 0.38-10.00) yr. Mean full-scale IQ was 97 (81-117) for transplanted children and 105 (87-130) for siblings. No difficulties were identified in intellect, cognition, academic function, and memory and learning in transplanted children or their siblings, although both groups had reduced mathematical ability compared with normal. Transplanted patients had difficulties in executive functioning, particularly in self-regulation, planning and organization, problem-solving, and visual scanning. Thirty-one percent (4/13) of transplanted patients, and no siblings, scored in the clinical range for ADHD. Emotional difficulties were noted in transplanted patients but were not different from their siblings. Long-term liver transplant survivors exhibit difficulties in executive function and are more likely to have ADHD despite relatively intact intellect and cognition.
Resumo:
Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.