228 resultados para ionic interactions
Resumo:
Currently used xenograft models for prostate cancer bone metastasis lack the adequate tissue composition necessary to study the interactions between human prostate cancer cells and the human bone microenvironment. We introduce a tissue engineering approach to explore the interactions between human tumor cells and a humanized bone microenvironment. Scaffolds, seeded with human primary osteoblasts in conjunction with BMP7, were implanted into immunodeficient mice to form humanized tissue engineered bone constructs (hTEBCs) which consequently resulted in the generation of highly vascularized and viable humanized bone. At 12 weeks, PC3 and LNCaP cells were injected into the hTEBCs. Seven weeks later the mice were euthanized. Micro-CT, histology, TRAP, PTHrP and osteocalcin staining results reflected the different characteristics of the two cell lines regarding their phenotypic growth pattern within bone. Microvessel density, as assessed by vWF staining, showed that tumor vessel density was significantly higher in LNCaP injected hTEBC implants than in those injected with PC3 cells (p\0.001). Interestingly, PC3 cells showed morphological features of epithelial and mesenchymal phenotypes suggesting a cellular plasticity within this microenvironment. Taken together, a highly reproducible humanized model was established which is successful in generating LNCaP and PC3 tumors within a complex humanized bone microenvironment. This model simulates the conditions seen clinically more closely than any other model described in the literature to date and hence represents a powerful experimental platform that can be used in future work to investigate specific biological questions relevant to bone metastasis.
Resumo:
This study aimed to develop a 3-Dimensional (D) hydrogel system for the co-culture of autologous human renal and immune cells. Previous studies have shown that human renal epithelial cells are able to modulate autologous immune cell responses. However, these studies were undertaken in a standard 2D culture system. The 3D model was developed to re-capitulate these observations within a more physiological relevant in vivo like environment.
Resumo:
We report the synthesis of new protic ionic liquids (PILs) based on aniline derivatives and the use of high-throughput (HT) techniques to screen possible candidates. In this work, a simple HT method was applied to rapidly screen different aniline derivatives against different acids in order to identify possible combinations that produce PILs. This was followed by repeating the HT process with Chemspeed robotic synthesis platform for more accurate results. One of the successful combinations were then chosen to be synthesised on full scale for further analysis. The new PILs are of interest to the fields of ionic liquids, energy storage and especially, conducting polymers as they serve as solvents, electrolytes and monomers in the same time for possible electropolymerisation (i.e. a self-contained polymer precursor).
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided into one of two categories: active level crossings which are fully automatic and have boom barriers, alarm bells, flashing lights, and pedestrian gates; and passive level crossings, which are not automatic and aim to control road and pedestrianised walkways solely with stop and give way signs. Active level crossings are considered to be the gold standard for transport ergonomics when grade separation (i.e. constructing an over- or underpass) is not viable. In Australia, the current strategy is to annually upgrade passive level crossings with active controls but active crossings are also associated with traffic congestion, largely as a result of extended closure times. The percentage of time level crossings are closed to road vehicles during peak periods increases with the rise in the frequency of train services. The popular perception appears to be that once a level crossing is upgraded, one is free to wipe their hands and consider the job done. However, there may also be environments where active protection is not enough, but where the setting may not justify the capital costs of grade separation. Indeed, the associated congestion and traffic delay could compromise safety by contributing to the risk taking behaviour by motorists and pedestrians. In these environments it is important to understand what human factor issues are present and ask the question of whether a one size fits all solution is indeed the most ergonomically sound solution for today’s transport needs.
Resumo:
This project investigated the interactions between insulin and its receptor. A combination of computational and experimental investigations resulted in the identification of four residues in non-canonical sites that, when mutated, had detrimental effects on insulin binding. An increased understanding of the binding mechanism will aid future research into diseases involving the insulin receptor and its relatives and could potentially lead to new therapeutic avenues to combat these health related issues.
Resumo:
Phage display is an advanced technology that can be used to characterize the interactions of antibody with antigen at the molecular level. It provides valuable data when applied to the investigation of IgE interaction with allergens. The aim of this rostrum article is to provide an explanation of the potential of phage display for increasing the understanding of allergen- IgE interaction, the discovery of diagnostic reagents, and the development of novel therapeutics for the treatment of allergic disease. The significance of initial studies that have applied phage display technology in allergy research will be highlighted. Phage display has been used to clone human IgE to timothy grass pollen allergen Phl p 5, to characterize the epitopes for murine and human antibodies to a birch pollen allergen Bet v 1, and to elucidate the epitopes of a murine mAb to the house dust mite allergen Der p 1. The technology has identified peptides that functionally mimic sites of human IgE constant domains and that were used to raise antiserum for blocking binding of IgE to the FcεRI on basophils and subsequent release of histamine. Phage display has also been used to characterize novel peanut and fungal allergens. The method has been used to increase our understanding of the molecular basis of allergen-IgE interactions and to develop clinically relevant reagents with the pharmacologic potential to block the effector phase of allergic reactions. Many advances from these early studies are likely as phage display technology evolves and allergists gain expertise in its research applications.
Resumo:
This review is focused on the impact of chemometrics for resolving data sets collected from investigations of the interactions of small molecules with biopolymers. These samples have been analyzed with various instrumental techniques, such as fluorescence, ultraviolet–visible spectroscopy, and voltammetry. The impact of two powerful and demonstrably useful multivariate methods for resolution of complex data—multivariate curve resolution–alternating least squares (MCR–ALS) and parallel factor analysis (PARAFAC)—is highlighted through analysis of applications involving the interactions of small molecules with the biopolymers, serum albumin, and deoxyribonucleic acid. The outcomes illustrated that significant information extracted by the chemometric methods was unattainable by simple, univariate data analysis. In addition, although the techniques used to collect data were confined to ultraviolet–visible spectroscopy, fluorescence spectroscopy, circular dichroism, and voltammetry, data profiles produced by other techniques may also be processed. Topics considered including binding sites and modes, cooperative and competitive small molecule binding, kinetics, and thermodynamics of ligand binding, and the folding and unfolding of biopolymers. Applications of the MCR–ALS and PARAFAC methods reviewed were primarily published between 2008 and 2013.
Resumo:
Sugarcane bagasse pretreatment processes using acidified aqueous ethylene glycol (EG) and ionic liquids (ILs) have been reported recently. In this study, recovery of lignins from these processes was conducted, as well as determination of their physico-chemical properties. The amount of lignins recovered from 1-butyl-3-methylimidazolium chloride ([bmim]Cl) with HCl as a catalyst and [bmim][CH3SO3] was ∼42%, and ∼35%–36% by EG with HCl or H2SO4 as a catalyst, respectively. The isolated lignins were characterised using wet chemistry, spectroscopy and thermogravimetry analysis (TGA), and the results compared to soda lignin from NaOH pretreatment of bagasse. The IL and EG lignins contained no or trace amounts of carbohydrates, slightly lower hydrogen content but slightly higher oxygen contents than soda lignin. The IL and EG lignins contained more C-3 and C-5 reactive sites for Mannich reaction and had more p-hydroxypheny propane unit structures than soda lignin. Two-dimensional heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) identified the major substructural units in the lignins, and allowed differences among them to be studied. As EG lignins were extracted in very reactive environment, intermediate enol ethers were formed and led to cleavage reactions which were not apparent in the other lignins. 31P NMR and infra-red spectroscopy results showed that IL and EG lignins had lower total hydroxyl content than soda lignin, probably indicating that a higher degree of self-polymerisation occurred during bagasse pretreatment, despite the use of lower temperature and shorter reaction time. On the basis of the salient features of these lignins, potential applications were proposed.
Resumo:
This paper investigates the effects of experience on the intuitiveness of physical and visual interactions performed by airport security screeners. Using portable eye tracking glasses, 40 security screeners were observed in the field as they performed search, examination and interface interactions during airport security x-ray screening. Data from semi structured interviews was used to further explore the nature of visual and physical interactions. Results show there are positive relationships between experience and the intuitiveness of visual and physical interactions performed by security screeners. As experience is gained, security screeners are found to perform search, examination and interface interactions more intuitively. In addition to experience, results suggest that intuitiveness is affected by the nature and modality of activities performed. This inference was made based on the dominant processing styles associated with search and examination activities. The paper concludes by discussing the implications that this research has for the design of visual and physical interfaces. We recommend designing interfaces that build on users’ already established intuitive processes, and that reduce the cognitive load incurred during transitions between visual and physical interactions.
Resumo:
Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in the world. It is believed that high stress within plaque can be an important factor which can trigger the rupture of the plaque. High resolution multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components (arterial wall, lipids, and fibrous cap) to be visualized in vivo [1]. The patient specific finite element model can be generated from the image data to perform stress analysis and provide critical information on understanding plaque rupture mechanisms [2]. The present work is to apply the procedure to a total of 14 patients (S1 ∼ S14), to study the stress distributions on carotid artery plaque reconstructed from multi-spectral magnetic resonance images, and the possible relationships between stress and plaque burdens.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment This fraction is the result of undesirable genotype-by-environment interactions (G x E) and measured by the genetic correlation (r(g)) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of G x E over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels
Resumo:
This study uses agent based modelling to simulate the worker interactions within a workplace and to investigate how the interactions can have impact on the workplace dynamics. Two new models (Bounded Confidence with Bias model and Relative Agreement with Bias model) are built based on the theoretical foundation of two existing models. A new factor, namely bias, is added into the new models which raises several issues to be studied.
Resumo:
Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
Organic thin films have myriad of applications in biological interfaces, micro-electromechanical systems and organic electronics. Polyterpenol thin films fabricated via RF plasma polymerization have been substantiated as a promising gate insulating and encapsulating layer for organic optoelectronics, sacrificial place-holders for air gap fabrication as well as antibacterial coatings for medical implants. This study aims to understand the wettability and solubility behavior of the nonsynthetic polymer thin film, polyterpenol. Polyterpenol exhibited monopolar behavior, manifesting mostly electron donor properties, and was not water soluble due to the extensive intermolecular and intramolecular hydrogen bonds present. Hydrophobicity of polyterpenol surfaces increased for films fabricated at higher RF power attributed to reduction in oxygen containing functional groups and increased cross linking. The studies carried out under various deposition conditions vindicate that we could tailor the properties of the polyterpenol thin film for a given application.