205 resultados para feature representation
Resumo:
Feature films remain critical flagships to any national film industry. Australian feature films can be highly commercial endeavours that also perform symbolic functions by embodying the national imaginary in big screen based sound and imagery. They conduct a dialogue with domestic audiences as well as showcase key aspects of Australia in the global film festival circuit. As the pre-eminent filmmaking form, feature films also serve as important launchpads for the careers of many Australian writers, directors, actors and technical crew. In the wake of over a decade of diminished share of local box office obtained by Australian feature films, Australian Feature Films and Distribution: Industry or cottage industry, examines issues in the production sector affecting the performance of Australian feature films and some responses by the central funding and support screen agency, Screen Australia.
Resumo:
User generated information such as product reviews have been booming due to the advent of web 2.0. In particular, rich information associated with reviewed products has been buried in such big data. In order to facilitate identifying useful information from product (e.g., cameras) reviews, opinion mining has been proposed and widely used in recent years. In detail, as the most critical step of opinion mining, feature extraction aims to extract significant product features from review texts. However, most existing approaches only find individual features rather than identifying the hierarchical relationships between the product features. In this paper, we propose an approach which finds both features and feature relationships, structured as a feature hierarchy which is referred to as feature taxonomy in the remainder of the paper. Specifically, by making use of frequent patterns and association rules, we construct the feature taxonomy to profile the product at multiple levels instead of single level, which provides more detailed information about the product. The experiment which has been conducted based upon some real world review datasets shows that our proposed method is capable of identifying product features and relations effectively.
Resumo:
In this paper we investigate the effectiveness of class specific sparse codes in the context of discriminative action classification. The bag-of-words representation is widely used in activity recognition to encode features, and although it yields state-of-the art performance with several feature descriptors it still suffers from large quantization errors and reduces the overall performance. Recently proposed sparse representation methods have been shown to effectively represent features as a linear combination of an over complete dictionary by minimizing the reconstruction error. In contrast to most of the sparse representation methods which focus on Sparse-Reconstruction based Classification (SRC), this paper focuses on a discriminative classification using a SVM by constructing class-specific sparse codes for motion and appearance separately. Experimental results demonstrates that separate motion and appearance specific sparse coefficients provide the most effective and discriminative representation for each class compared to a single class-specific sparse coefficients.
Resumo:
Training for bodybuilding competition is clearly a serious business that inflicts serious demands on the competitor. Not only did Francis commit time and money to compete, but he also arguably put winning before his physical well-being—enduring pain and suffering from his injury. Bodybuilding may seem like an extreme example, but it is not the only activity in which people suffer in pursuit of their goals. Boxers fight each other in the ring; soccer players risk knee and ankle injuries, sometimes playing despite being hurt; and mountaineers risk their lives in dangerous climbs. In the arts there are many examples of people suffering to achieve their goals: Beethoven kept composing, conducting, and performing despite his hearing loss; van Gogh grappled with depression but kept painting, finding fame only posthumously; and Mozart lived the final years of his life impoverished but still composing. These examples show that many great achievements come at a price: severe suffering...
Resumo:
This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.
Resumo:
While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk platform, collecting human viewpoint preferences from 65 participants for 4 representative su- perfamilies of protein domains. In particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference of other, mostly non-abstract objects. In a second study, we asked 7 molecular biology experts to find the best viewpoint of the same protein domains and compared their choices with viewpoint entropy. Our results show that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon representations of protein secondary structure. However, the accuracy is highly dependent on the complexity of the structure: while most participants agree on good viewpoints for small, non-globular structures with few secondary structure elements, viewpoint preference varies considerably for complex structures. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to emphasize different aspects of the respective structure.
Resumo:
Generating discriminative input features is a key requirement for achieving highly accurate classifiers. The process of generating features from raw data is known as feature engineering and it can take significant manual effort. In this paper we propose automated feature engineering to derive a suite of additional features from a given set of basic features with the aim of both improving classifier accuracy through discriminative features, and to assist data scientists through automation. Our implementation is specific to HTTP computer network traffic. To measure the effectiveness of our proposal, we compare the performance of a supervised machine learning classifier built with automated feature engineering versus one using human-guided features. The classifier addresses a problem in computer network security, namely the detection of HTTP tunnels. We use Bro to process network traffic into base features and then apply automated feature engineering to calculate a larger set of derived features. The derived features are calculated without favour to any base feature and include entropy, length and N-grams for all string features, and counts and averages over time for all numeric features. Feature selection is then used to find the most relevant subset of these features. Testing showed that both classifiers achieved a detection rate above 99.93% at a false positive rate below 0.01%. For our datasets, we conclude that automated feature engineering can provide the advantages of increasing classifier development speed and reducing development technical difficulties through the removal of manual feature engineering. These are achieved while also maintaining classification accuracy.
Resumo:
This research investigates techniques to analyse long duration acoustic recordings to help ecologists monitor birdcall activities. It designs a generalized algorithm to identify a broad range of bird species. It allows ecologists to search for arbitrary birdcalls of interest, rather than restricting them to just a very limited number of species on which the recogniser is trained. The algorithm can help ecologists find sounds of interest more efficiently by filtering out large volumes of unwanted sounds and only focusing on birdcalls.
Resumo:
The increased availability of image capturing devices has enabled collections of digital images to rapidly expand in both size and diversity. This has created a constantly growing need for efficient and effective image browsing, searching, and retrieval tools. Pseudo-relevance feedback (PRF) has proven to be an effective mechanism for improving retrieval accuracy. An original, simple yet effective rank-based PRF mechanism (RB-PRF) that takes into account the initial rank order of each image to improve retrieval accuracy is proposed. This RB-PRF mechanism innovates by making use of binary image signatures to improve retrieval precision by promoting images similar to highly ranked images and demoting images similar to lower ranked images. Empirical evaluations based on standard benchmarks, namely Wang, Oliva & Torralba, and Corel datasets demonstrate the effectiveness of the proposed RB-PRF mechanism in image retrieval.
Resumo:
Deep convolutional neural networks (DCNNs) have been employed in many computer vision tasks with great success due to their robustness in feature learning. One of the advantages of DCNNs is their representation robustness to object locations, which is useful for object recognition tasks. However, this also discards spatial information, which is useful when dealing with topological information of the image (e.g. scene labeling, face recognition). In this paper, we propose a deeper and wider network architecture to tackle the scene labeling task. The depth is achieved by incorporating predictions from multiple early layers of the DCNN. The width is achieved by combining multiple outputs of the network. We then further refine the parsing task by adopting graphical models (GMs) as a post-processing step to incorporate spatial and contextual information into the network. The new strategy for a deeper, wider convolutional network coupled with graphical models has shown promising results on the PASCAL-Context dataset.