396 resultados para borehole carbon correction factor (avogadro units)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic carbon (C) sequestration rates based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to simulate the economic potential for C sequestration in response to conservation tillage in the six agro-ecological zones within the Southern Region of the Australian grains industry. The net C sequestration rate over 20 years for the Southern Region (which includes discounting for associated greenhouse gases) is estimated to be 3.6 or 6.3 Mg C/ha after converting to either minimum or no-tillage practices, respectively, with no-till practices estimated to return 75% more carbon on average than minimum tillage. The highest net gains in C per ha are realised when converting from conventional to no-tillage practices in the high-activity clay soils of the High Rainfall and Wimmera agro-ecological zones. On the basis of total area available for change, the Slopes agro-ecological zone offers the highest net returns, potentially sequestering an additional 7.1 Mt C under no-tillage scenario over 20 years. The economic analysis was summarised as C supply curves for each of the 6 zones expressing the total additional C accumulated over 20 years for a price per t C sequestered ranging from zero to AU$200. For a price of $50/Mg C, a total of 427 000 Mg C would be sequestered over 20 years across the Southern Region, <5% of the simulated C sequestration potential of 9.1 Mt for the region. The Wimmera and Mid-North offer the largest gains in C under minimum tillage over 20 years of all zones for all C prices. For the no-tillage scenario, for a price of $50/Mg C, 1.74 Mt C would be sequestered over 20 years across the Southern Region, <10% of the simulated C sequestration potential of 18.6 Mt for the region over 20 years. The Slopes agro-ecological zone offers the best return in C over 20 years under no-tillage for all C prices. The Mallee offers the least return for both minimum and no-tillage scenarios. At a price of $200/Mg C, the transition from conventional tillage to minimum or no-tillage practices will only realise 19% and 33%, respectively, of the total biogeochemical sequestration potential of crop and pasture systems of the Southern Region over a 20-year period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem-cell mediated therapies for fracture and other orthopaedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of simulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase (ALP) activity and extracellular matrix mineralization. Furthermore, similar DMSO mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1 we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased ALP activity and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. Flow on knockdown of bone specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a polymorphism was identified in exon 25 of the factor V gene that is possibly a functional candidate for the HR2 haplotype. This haplotype is characterized by a single base substitution named R2 (A4070G) in the B domain of the protein. A mutation (A6755G; 2194Asp→Gly) located near the C terminus has been hypothesized to influence protein folding and glycosylation, and might be responsible for the shift in factor V isoform (FV1 / FV2) ratio. This study investigated the prevalence of these two factor V HR2 haplotype polymorphisms in a cohort of normal blood donors, patients with osteoarthritis and women with complications during pregnancy, and in families of factor V Leiden individuals. A high allele frequency for the two polymorphisms was found in the blood donor group (6.2% R2, 5.6% A6755G). No significant difference in allele frequency was observed in the clinical groups (obstetric complications and osteoarthritis, 4.1-4.9% for the two polymorphisms) when compared with that of healthy blood donors. We confirm that the factor V A6755G polymorphism shows strong linkage to the R2 allele, although it is not exclusively inherited with the exon 13 A4070G variant and can occur independently. © 2001 Lippincott Williams & Wilkins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated protein C resistance (APCR), the most common risk factor for venous thrombosis, is the result of a G to A base substitution at nucleotide 1691 (R506Q) in the factor V gene. Current techniques to detect the factor V Leiden mutation, such as determination of restriction length polymorphisms, do not have the capacity to screen large numbers of samples in a rapid, cost- effective test. The aim of this study was to apply the first nucleotide change (FNC) technology, to the detection of the factor V Leiden mutation. After preliminary amplification of genomic DNA by polymerase chain reaction (PCR), an allele-specific primer was hybridised to the PCR product and extended using fluorescent terminating dideoxynucleotides which were detected by colorimetric assay. Using this ELISA-based assay, the prevalence of the factor V Leiden mutation was determined in an Australian blood donor population (n = 500). A total of 18 heterozygotes were identified (3.6%) and all of these were confirmed with conventional MnlI restriction digest. No homozygotes for the variant allele were detected. We conclude from this study that the frequency of 3.6% is compatible with others published for Caucasian populations. In addition, the FNC technology shows promise as the basis for a rapid, automated DNA based test for factor V Leiden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant reduction in carbon emissions is a global mission and the construction industry has an indispensable role to play as a major carbon dioxide (CO2) generator. Over the years, various building environmental assessment (BEA) models and concepts have been developed to promote environmentally responsible design and construction. However, limited attention has been placed on assessing and benchmarking the carbon emitted throughout the lifecycle of building facilities. This situation could undermine the construction industry’s potential to reduce its dependence on raw materials, recognise the negative impacts of producing new materials, and intensify the recycle and reuse process. In this paper, current BEA approaches adopted by the construction industry are first introduced. The focus of these models and concepts is then examined. Following a brief review of lifecycle analysis, the boundary in which a lifecycle carbon emission analysis should be set for a construction project is identified. The paper concludes by highlighting the potential barriers of applying lifecycle carbon emissions analysis in the construction industry. It is proposed that lifecycle carbon emission analysis can be integrated with existing BEA models to provide a more comprehensive and accurate evaluation on the cradle-to-grave environmental performance of a construction facility. In doing so, this can assist owners and clients to identify the optimum solution to maximise emissions reduction opportunities.