428 resultados para Tsai-Wu
Resumo:
Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically
Resumo:
Synergistic effect of metallic couple and carbon nanotubes on Mg results in an ultrafast kinetics of hydrogenation that overcome a critical barrier of practical use of Mg as hydrogen storage materials. The ultrafast kinetics is attributed to the metal−H atomic interaction at the Mg surface and in the bulk (energy for bonding and releasing) and atomic hydrogen diffusion along the grain boundaries (aggregation of carbon nanotubes) and inside the grains. Hence, a hydrogenation mechanism is presented.
Resumo:
For almost a decade before Hollywood existed, French firm Pathe towered over the early film industry with estimates of its share of all films sold around the world varying between 50-70%. This paper analyses Pathe’s rise to market leadership by applying a theoretical framework drawn from the business literature on causes of industry dominance, that provides insights into how firms acquire and maintain market dominance. This paper uses evidence presented by film historians to argue that Pathe “fits” the expected theoretical model of the dominant firm because it had a marketing orientation, used an effective quality- based competitive strategy and possessed the six critical strategic marketing capabilities that business research shows enable the best performing firms to consistently outperform rivals.
Resumo:
Objectives: Smoking cessation has been shown to be an important intervention for preventing cardiovascular events and improving the health of patients with heart disease. However, unaided quit attempts in these patients often leads to high rates of failure and a return to smoking. Outpatient smoking cessation clinics using face-to-face counseling, ongoing behavioral support, advice on smoking pharmacotherapy and objective monitoring, have been found to be one of the most effective interventions for improving quit smoking rates. An outpatient smoking cessation clinic was trialed within a cardiac rehabilitation service in order to explore its effects on smoking rates for patients with or at risk of heart disease. Attendance rates to the clinic were also monitored. Methods: A descriptive exploratory design was used for this newly developed clinic. Patients who currently smoked tobacco and who had a history of either coronary artery disease, heart failure, atrial fibrillation or those seen under a chest pain assessment service were invited to an outpatient ‘Cardiac Patients Smokers Clinic’. Initially patients were offered up to 10 clinic visits over a 3 month period. Follow-up clinic visits were conducted at 3, 6 and 12 months. A portable carbon monoxide meter was used to objectively measure levels of smoking and validate smoking abstinence. Primary outcomes included rates of attendance. Results: Preliminary findings showed 24 per cent of participants (N = 6) completed all their clinic visits and remained smoke free as measured by their ongoing expired carbon monoxide readings. Clinic attendance rates appeared lowest for those with significant mental health issues such as schizophrenia or substance abuse. However, rates of attendance were improved by having an administration officer make reminder telephone calls prior to clinic visits. Conclusions: Early findings indicate the feasibility of providing a specialist smoking cessation clinic within a cardiac rehabilitation service. Further, that reminder telephone calls prior to appointments improved attendance rates in patients with heart disease to this type of clinic. However, future investigations are warranted.
Resumo:
Background: Cardiac patients with diabetes are at higher readmission rates (22%) compared to only 6% for those patients without diabetes. Evidence shows benefits of peer support and using information technology to improve chronic illness and achieve better health outcomes. However limited evidence suggests that cardiac or diabetes self-management programs incorporating peer supporters (patients with similar conditions) or telephone and text-messaging, have improved health outcomes and reduce health care utilisations. A multidisciplinary research team approach is crucial to accommodate the complex aspects of delivering intervention programs for these at-risk patients. However, challenges such as the inconsistency in significance of key concepts across research fields, as well as practical and operational issues within different contexts are often experienced. Aims: To develop an effective multidisciplinary team approach to deliver a peer support based cardiac-diabetes self-management program incorporating the preparation of lay personnel to provide telephone and text-messaging follow up support. Methods: The approach was used for a multidisciplinary project using randomised controlled trial. Results: The findings from multidisciplinary team approach reveal the feasibility of a Peer support based cardiac-diabetes self-management program.
Resumo:
Enterprise Systems (ES) provide standardized, off-theshelf support for operations and management within organizations. With the advent of ES based on a serviceoriented architecture (SOA) and an increasing demand of IT-supported interorganizational collaboration, implementation projects face paradigmatically new challenges. The configuration of ES is costly and error-prone. Dependencies between business processes and business documents are hardly explicit and foster component proliferation instead of reuse. Configurative modeling can support the problem in two ways: First, conceptual modeling abstracts from technical details and provides more intuitive access and overview. Second, configuration allows the projection of variants from master models providing manageable variants with controlled flexibility. We aim at tackling the problem by proposing an integrated model-based framework for configuring both, processes and business documents, on an equal basis; as together, they constitute the core business components of an ES.
Resumo:
It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to improve frequent association mining. Rather than using patterns, it uses granules to represent knowledge implicitly contained in databases. It also uses multi-tier structures and association mappings to represent association rules in terms of granules. Consequently, association rules can be quickly accessed and meaningless association rules can be justified according to the association mappings. Moreover, the proposed structure is also an precise compression of patterns which can restore the original supports. The experimental results shows that the proposed approach is promising.
Resumo:
Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.
Resumo:
In this paper, a comparative study of Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors is presented. MoO3 nanostructured films with three different morphologies (nanoplatelets, nanoplateletsnanowires and nano-flowers) were deposited on SiC by thermal evaporation. We compare the current-voltage characteristics and the dynamic response of these sensors as they are exposed to hydrogen gas at temperatures up to 250°C. Results indicate that the sensor based on MoO3 nanoflowers exhibited the highest sensitivity (in terms of a 5.79V voltage shift) towards 1% hydrogen; while the sensor based on MoO3 nanoplatelets showed the quickest response (t90%- 40s).
Resumo:
Periodontitis results from the destructive inflammatory reaction of the host elicited by a bacterial biofilm adhering to the tooth surface and if left untreated, may lead to the loss of the teeth and the surrounding tissues, including the alveolar bone. Cementum is a specialized calcified tissue covering the tooth root and an essential part of the periodontium which enables the attachment of the periodontal ligament to the root and the surrounding alveolar bone. Periodontal ligament cells (PDLCs) represent a promising cell source for periodontal tissue engineering. Since cementogenesis is the critical event for the regeneration of periodontal tissues, this study examined whether inorganic stimuli derived from bioactive bredigite (Ca7MgSi4O16) bioceramics could stimulate the proliferation and cementogenic differentiation of PDLCs, and further investigated the involvement of the Wnt/β-catenin signalling pathway during this process via analysing gene/protein expression of PDLCs which interacted with bredigite extracts. Our results showed that the ionic products from bredigite powder extracts led to significantly enhanced proliferation and cementogenic differentiation, including mineralization–nodule formation, ALP activity and a series of bone/cementum-related gene/protein expression (ALP, OPN, OCN, BSP, CAP and CEMP1) of PDLCs in a concentration dependent manner. Furthermore, the addition of cardamonin, a Wnt/β-catenin signalling inhibitor, reduced the pro-cementogenesis effect of the bredigite extracts, indicating the involvement of the Wnt/β-catenin signalling pathway in the cementogenesis of PDLCs induced by bredigite extracts. The present study suggests that an entirely inorganic stimulus with a specific composition of bredigite bioceramics possesses the capacity to trigger the activation of the Wnt/β-catenin signalling pathway, leading to stimulated differentiation of PDLCs toward a cementogenic lineage. The results indicate the therapeutic potential of bredigite ceramics in periodontal tissue engineering application.
Resumo:
This paper presents a study whereby a series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine fitted with a piston having an undersized skirt. This experimental simulation resulted in engine running conditions that included abnormally high levels of piston slap occurring in one of the cylinders. The detectability of the resultant Diesel engine piston slap was investigated using acoustic emission signals. Data corresponding to both normal and piston slap engine running conditions was captured using acoustic emission transducers along with both; in-cylinder pressure and top-dead centre reference signals. Using these signals it was possible to demonstrate that the increased piston slap running conditions were distinguishable by monitoring the piston slap events occurring near the piston mid-stroke positions. However, when monitoring the piston slap events occurring near the TDC/BDC piston stroke positions, the normal and excessive piston slap engine running condition were not clearly distinguishable.
Resumo:
We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.
Resumo:
Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.