276 resultados para Traffic congestion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sizedtrucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Drink-driving has been implicated in many road traffic crashes in the world. Consequently, the developed countries have prioritized drink-driving research. Contrary, drink-driving research has not attained any meaningful consideration in many developing countries. It is therefore imperative to intensify drink-driving research so as to provide research driven solutions to the menace. Aims The objective is to establish determinants of drink-driving and its association with traffic crashes in Ghana. Methods A randomized roadside breathalyzer survey was conducted. A multivariable logistic regression was used to establish significant determinants of drink-driving and a bivariate logistic regression to establish the association between drink–driving and road traffic crashes in Ghana. Results In total, 2,736 motorists were randomly stopped for breath testing of whom 8.7% tested positive for alcohol. Among the total participants, 5.5% exceeded the legal BAC limit of 0.08%. Formal education is associated with a reduced likelihood of drink-driving compared with drivers without formal education. The propensity to drink-drive is 1.8 times higher among illiterate drivers compared with drivers with basic education. Young adult drivers also recorded elevated likelihoods for driving under alcohol impairment compared with adult drivers. The odds of drink-driving among truck drivers is OR=1.81, (95% CI=1.16 to 2.82) and two wheeler riders is OR=1.41, (95% CI=0.47 to 4.28) compared with car drivers. Contrary to general perception, commercial car drivers have a significant reduced likelihood of 41%, OR=0.59, (95% CI=0.38 to 0.92) compared with the private car driver. Bivariate analysis conducted showed a significant association between the proportion of drivers exceeding the legal BAC limit and road traffic fatalities, p<0.001. The model predicts a 1% increase in the proportion of drivers exceeding the legal BAC to be associated with a 4% increase in road traffic fatalities, 95% CI= 3% to 5% and vice versa. Discussion and conclusion A positive and significant association between roadside alcohol prevalence and road traffic fatality has been established. Scaling up roadside breath test, determining standard drink and disseminating to the populace and formulating policies targeting the youth such as increasing minimum legal drinking age and reduced legal BAC limit for the youth and novice drivers might improve drink-driving related crashes in Ghana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure control or case-control methodologies are common techniques for estimating crash risks, however they require either observational data on control cases or exogenous exposure data, such as vehicle-kilometres travelled. This study proposes an alternative methodology for estimating crash risk of road user groups, whilst controlling for exposure under a variety of roadway, traffic and environmental factors by using readily available police-reported crash data. In particular, the proposed method employs a combination of a log-linear model and quasi-induced exposure technique to identify significant interactions among a range of roadway, environmental and traffic conditions to estimate associated crash risks. The proposed methodology is illustrated using a set of police-reported crash data from January 2004 to June 2009 on roadways in Queensland, Australia. Exposure-controlled crash risks of motorcyclists—involved in multi-vehicle crashes at intersections—were estimated under various combinations of variables like posted speed limit, intersection control type, intersection configuration, and lighting condition. Results show that the crash risk of motorcycles at three-legged intersections is high if the posted speed limits along the approaches are greater than 60 km/h. The crash risk at three-legged intersections is also high when they are unsignalized. Dark lighting conditions appear to increase the crash risk of motorcycles at signalized intersections, but the problem of night time conspicuity of motorcyclists at intersections is lessened on approaches with lower speed limits. This study demonstrates that this combined methodology is a promising tool for gaining new insights into the crash risks of road user groups, and is transferrable to other road users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of the Bluetooth (BT) technology to transportation has been enabling researchers to make accurate travel time observations, in freeway and arterial roads. The Bluetooth traffic data are generally incomplete, for they only relate to those vehicles that are equipped with Bluetooth devices, and that are detected by the Bluetooth sensors of the road network. The fraction of detected vehicles versus the total number of transiting vehicles is often referred to as Bluetooth Penetration Rate (BTPR). The aim of this study is to precisely define the spatio-temporal relationship between the quantities that become available through the partial, noisy BT observations; and the hidden variables that describe the actual dynamics of vehicular traffic. To do so, we propose to incorporate a multi- class traffic model into a Sequential Montecarlo Estimation algorithm. Our framework has been applied for the empirical travel time investigations into the Brisbane Metropolitan region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the relationship between macroscopic traffic parameters, such as flow, speed and travel time, is essential to the understanding of the behaviour of freeway and arterial roads. However, the temporal dynamics of these parameters are difficult to model, especially for arterial roads, where the process of traffic change is driven by a variety of variables. The introduction of the Bluetooth technology into the transportation area has proven exceptionally useful for monitoring vehicular traffic, as it allows reliable estimation of travel times and traffic demands. In this work, we propose an approach based on Bayesian networks for analyzing and predicting the complex dynamics of flow or volume, based on travel time observations from Bluetooth sensors. The spatio-temporal relationship between volume and travel time is captured through a first-order transition model, and a univariate Gaussian sensor model. The two models are trained and tested on travel time and volume data, from an arterial link, collected over a period of six days. To reduce the computational costs of the inference tasks, volume is converted into a discrete variable. The discretization process is carried out through a Self-Organizing Map. Preliminary results show that a simple Bayesian network can effectively estimate and predict the complex temporal dynamics of arterial volumes from the travel time data. Not only is the model well suited to produce posterior distributions over single past, current and future states; but it also allows computing the estimations of joint distributions, over sequences of states. Furthermore, the Bayesian network can achieve excellent prediction, even when the stream of travel time observation is partially incomplete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Police reported crash data are the primary source of crash information in most jurisdictions. However, the definition of serious injury within police-reported data is not consistent across jurisdictions and may not be accurate. With the Australian National Road Safety Strategy targeting the reduction of serious injuries, there is a greater need to assess the accuracy of the methods used to identify these injuries. A possible source of more accurate information relating to injury severity is hospital data. While other studies have compared police and hospital data to highlight the under-reporting in police-reported data, little attention has been given to the accuracy of the methods used by police to identify serious injuries. The current study aimed to assess how accurate the identification of serious injuries is in police-reported crash data, by comparing the profiles of transport-related injuries in the Queensland Road Crash Database with an aligned sample of data from the Queensland Hospital Admitted Patients Data Collection. Results showed that, while a similar number of traffic injuries were recorded in both data sets, the profile of these injuries was different based on gender, age, location, and road user. The results suggest that the ‘hospitalisation’ severity category used by police may not reflect true hospitalisations in all cases. Further, it highlights the wide variety of severity levels within hospitalised cases that are not captured by the current police-reported definitions. While a data linkage study is required to confirm these results, they highlight that a reliance on police-reported serious traffic injury data alone could result in inaccurate estimates of the impact and cost of crashes and lead to a misallocation of valuable resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To enhance the performance of the k-nearest neighbors approach in forecasting short-term traffic volume, this paper proposed and tested a two-step approach with the ability of forecasting multiple steps. In selecting k-nearest neighbors, a time constraint window is introduced, and then local minima of the distances between the state vectors are ranked to avoid overlappings among candidates. Moreover, to control extreme values’ undesirable impact, a novel algorithm with attractive analytical features is developed based on the principle component. The enhanced KNN method has been evaluated using the field data, and our comparison analysis shows that it outperformed the competing algorithms in most cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Travel time estimation and prediction on motorways has long been a topic of research. Prediction modeling generally assumes that the estimation is perfect. No matter how good is the prediction modeling- the errors in estimation can significantly deteriorate the accuracy and reliability of the prediction. Models have been proposed to estimate travel time from loop detector data. Generally, detectors are closely spaced (say 500m) and travel time can be estimated accurately. However, detectors are not always perfect, and even during normal running conditions few detectors malfunction, resulting in increase in the spacing between the functional detectors. Under such conditions, error in the travel time estimation is significantly large and generally unacceptable. This research evaluates the in-practice travel time estimation model during different traffic conditions. It is observed that the existing models fail to accurately estimate travel time during large detector spacing and congestion shoulder periods. Addressing this issue, an innovative Hybrid model that only considers loop data for travel time estimation is proposed. The model is tested using simulation and is validated with real Bluetooth data from Pacific Motorway Brisbane. Results indicate that during non free flow conditions and larger detector spacing Hybrid model provides significant improvement in the accuracy of travel time estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research identifies roadway, traffic, and environmental factors that influence the injury severity of road traffic crashes in Dhaka. Dhaka provides a rather unusual driving risk environment to study, since virtually anyone can obtain a drivers’ license and very little traffic enforcement and fines are given when drivers violate traffic rules. To examine this city with presumed heightened crash severity risk, police reported crash data from 2007 to 2011 containing about 2714 road traffic crashes were collected. The injury severity of traffic crashes—recorded as either fatal, serious injury, or property damage only—were modeled using an ordered Probit model. Significant factors increasing the probability of fatal injuries include crashes along highways (65%), absence of a road divider (80%), crashes during night time (54%), and vehicle-pedestrian collisions (367%); whereas two-way traffic configuration (21%), and traffic police controlled schemes (41%) decrease the probability of fatalities. Both similarities and differences of the findings between crash risk in Dhaka and developed countries are discussed in policy relevant terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic safety culture is a relatively new concept which has recently gained attention in the field of traffic safety. There is currently little known regarding the nature of the concept, nor how it should be defined. Preliminary definitions have tended to focus on specific road safety problems and the anticipated effect of a strong traffic safety culture. The literature to date has tended to emphasise how traffic safety culture might be created or shaped. However, without a better understanding of the nature and structure of traffic safety culture, discussions regarding changes to traffic safety culture are restricted. An examination of different conceptualisations and definitions of organisational safety culture provides a preliminary theoretical framework for traffic safety culture. Two high risk driving behaviours within the Australian context are compared to illustrate how key factors within this framework can be used to understand and improve road safety outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporary Traffic Control Plans (TCP’s), which provide construction phasing to maintain traffic during construction operations, are integral component of highway construction project design. Using the initial design, designers develop estimated quantities for the required TCP devices that become the basis for bids submitted by highway contractors. However, actual as-built quantities are often significantly different from the engineer’s original estimate. The total cost of TCP phasing on highway construction projects amounts to 6–10% of the total construction cost. Variations between engineer estimated quantities and final quantities contribute to reduced cost control, increased chances of cost related litigations, and bid rankings and selection. Statistical analyses of over 2000 highway construction projects were performed to determine the sources of variation, which later were used as the basis of development for an automated-hybrid prediction model that uses multiple regressions and heuristic rules to provide accurate TCP quantities and costs. The predictive accuracy of the model developed was demonstrated through several case studies.