582 resultados para Strongly Semantic Information


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper seeks to continue the debate about the need for professionals in the library and information services (LIS) sector to continually engage in career-long learning to sustain and develop their knowledge and skills in a dynamic industry. Aims: The neXus2 workforce study has been funded by the ALIA and the consortium of National and State Libraries Australasia (NSLA). It builds on earlier research work (the neXus census) that looked at the demographic, educational and career perspectives of individual library and information professions, to critically examine institutional policies and practices associated with the LIS workforce. The research aims to develop a clearer understanding of the issues impacting on workforce sustainability, workforce capability and workforce optimisation. Methods: The research methodology involved an extensive online survey conducted in March 2008 which collected data on organisational and general staffing; recruitment and retention; staff development and continuing professional education; and succession planning. Encouragement to participate was provided by key industry groups, including academic, public, health, law and government library and information agencies, with the result that around 150 institutions completed the questionnaire. Results: The paper will specifically discuss the research findings relating to training and professional development, to measure the scope and distribution of training activities across the workforce, to consider the interrelationship between the strategic and operational dimensions of staff development in individual institutions and to analyse the common and distinctive factors evident in the different sectors of the profession. Conclusion: The neXus2 project has successfully engaged LIS institutions in the collection of complex industry data that is relevant to the future education and workforce strategies for all areas of the profession. Cross-sector forums such as Information Online 2009 offer the opportunity for stimulating professional dialogue on the key issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. Experienced drivers have better hazard perception ability compared to inexperienced drivers. Eye gaze patterns have been found to be an indicator of the driver's competency level. The aim of this paper is to develop an in-vehicle system which correlates information about the driver's gaze and vehicle dynamics, which is then used to assist driver trainers in assessing driving competency. This system allows visualization of the complete driving manoeuvre data on interactive maps. It uses an eye tracker and perspective projection algorithms to compute the depth of gaze and plots it on Google maps. This interactive map also features the trajectory of the vehicle and turn indicator usage. This system allows efficient and user friendly analysis of the driving task. It can be used by driver trainers and trainees to understand objectively the risks encountered during driving manoeuvres. This paper presents a prototype that plots the driver's eye gaze depth and direction on an interactive map along with the vehicle dynamics information. This prototype will be used in future to study the difference in gaze patterns in novice and experienced drivers prior to a certain manoeuvre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details research completed in 2007 which investigated autopsy decision making in a death investigation. The data was gathered during the first year of operation of a new Coroners Act in Queensland, Australia, which changed the process of death investigation in three ways which are important to this paper. First, it required a greater amount of information to be gathered at the scene by police, and this included a thorough investigation of the circumstances of the death, including statements from witnesses, friends and family, as well as evidence gathering at the scene. Second, it required Coroners, for the first time, to determine the level of invasiveness of the autopsy required to complete the death investigation. Third, it enabled the communication of a genuine family concern, to be communicated to the Coroner. The outcome of such information was threefold. First, a greater amount of information offered to the Coroner led to a decrease in the number of full internal autopsies ordered, but an increase in the number of partial internal autopsies ordered. Second, this shift in autopsy decision making by Coroners saw certain factors given greater importance than others in decisions to order full internal or external only autopsies. Third, a raised family concern had a significant impact on autopsy decision making and tended to decrease the invasiveness of the autopsy ordered by Coroners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neXus2 research project has sought to investigate the library and information services (LIS) workforce in Australia, from the institutional or employer perspective. The study builds on the neXus1 study, which collected data from individuals in the LIS workforce in order to present a snapshot of the profession in 2006, highlighting the demographics, educational background and career details of library and information professionals in Australia. To counterbalance this individual perspective, library institutions were invited to participate in a survey to contribute further data as employers. This final report on the neXus2 project compares the findings from the different library sectors, ie academic libraries, TAFE libraries, the National and State libraries, public libraries, special libraries and school libraries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective information and knowledge management (IKM) is critical to corporate success; yet, its actual establishment and management is not yet fully understood. We identify ten organizational elements that need to be addressed to ensure the effective implementation and maintenance of information and knowledge management within organizations. We define these elements and provide key characterizations. We then discuss a case study that describes the implementation of an information system (designed to support IKM) in a medical supplies organization. We apply the framework of organizational elements in our analysis to uncover the enablers and barriers in this systems implementation project. Our analysis suggests that taking the ten organizational elements into consideration when implementing information systems will assist practitioners in managing information and knowledge processes more effectively and efficiently. We discuss implications for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do commencing students possess the level of information literacy (IL) knowledge and skills they need to succeed at university? What impact does embedding IL within the engineering and design curriculum have? This paper reports on the self-perception versus the reality of IL knowledge and skills, across a large cohort of first year built environment and engineering students. Acting on the findings of this evaluation, the authors (a team of academic librarians) developed an intensive IL skills program which was integrated into a faculty wide unit. Perceptions, knowledge and skills were re-evaluated at the end of the semester to determine if embedded IL education made a difference. Findings reveal that both the perception and reality of IL skills were significantly and measurably improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to examine the use of bid information, including both price and non-price factors in predicting the bidder’s performance. Design/methodology/approach – The practice of the industry was first reviewed. Data on bid evaluation and performance records of the successful bids were then obtained from the Hong Kong Housing Department, the largest housing provider in Hong Kong. This was followed by the development of a radial basis function (RBF) neural network based performance prediction model. Findings – It is found that public clients are more conscientious and include non-price factors in their bid evaluation equations. With the input variables used the information is available at the time of the bid and the output variable is the project performance score recorded during work in progress achieved by the successful bidder. It was found that past project performance score is the most sensitive input variable in predicting future performance. Research limitations/implications – The paper shows the inadequacy of using price alone for bid award criterion. The need for a systemic performance evaluation is also highlighted, as this information is highly instrumental for subsequent bid evaluations. The caveat for this study is that the prediction model was developed based on data obtained from one single source. Originality/value – The value of the paper is in the use of an RBF neural network as the prediction tool because it can model non-linear function. This capability avoids tedious ‘‘trial and error’’ in deciding the number of hidden layers to be used in the network model. Keywords Hong Kong, Construction industry, Neural nets, Modelling, Bid offer spreads Paper type Research paper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explosive growth of the World-Wide-Web and the emergence of ecommerce are the major two factors that have led to the development of recommender systems (Resnick and Varian, 1997). The main task of recommender systems is to learn from users and recommend items (e.g. information, products or books) that match the users’ personal preferences. Recommender systems have been an active research area for more than a decade. Many different techniques and systems with distinct strengths have been developed to generate better quality recommendations. One of the main factors that affect recommenders’ recommendation quality is the amount of information resources that are available to the recommenders. The main feature of the recommender systems is their ability to make personalised recommendations for different individuals. However, for many ecommerce sites, it is difficult for them to obtain sufficient knowledge about their users. Hence, the recommendations they provided to their users are often poor and not personalised. This information insufficiency problem is commonly referred to as the cold-start problem. Most existing research on recommender systems focus on developing techniques to better utilise the available information resources to achieve better recommendation quality. However, while the amount of available data and information remains insufficient, these techniques can only provide limited improvements to the overall recommendation quality. In this thesis, a novel and intuitive approach towards improving recommendation quality and alleviating the cold-start problem is attempted. This approach is enriching the information resources. It can be easily observed that when there is sufficient information and knowledge base to support recommendation making, even the simplest recommender systems can outperform the sophisticated ones with limited information resources. Two possible strategies are suggested in this thesis to achieve the proposed information enrichment for recommenders: • The first strategy suggests that information resources can be enriched by considering other information or data facets. Specifically, a taxonomy-based recommender, Hybrid Taxonomy Recommender (HTR), is presented in this thesis. HTR exploits the relationship between users’ taxonomic preferences and item preferences from the combination of the widely available product taxonomic information and the existing user rating data, and it then utilises this taxonomic preference to item preference relation to generate high quality recommendations. • The second strategy suggests that information resources can be enriched simply by obtaining information resources from other parties. In this thesis, a distributed recommender framework, Ecommerce-oriented Distributed Recommender System (EDRS), is proposed. The proposed EDRS allows multiple recommenders from different parties (i.e. organisations or ecommerce sites) to share recommendations and information resources with each other in order to improve their recommendation quality. Based on the results obtained from the experiments conducted in this thesis, the proposed systems and techniques have achieved great improvement in both making quality recommendations and alleviating the cold-start problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An examination of Information Security (IS) and Information Security Management (ISM) research in Saudi Arabia has shown the need for more rigorous studies focusing on the implementation and adoption processes involved with IS culture and practices. Overall, there is a lack of academic and professional literature about ISM and more specifically IS culture in Saudi Arabia. Therefore, the overall aim of this paper is to identify issues and factors that assist the implementation and the adoption of IS culture and practices within the Saudi environment. The goal of this paper is to identify the important conditions for creating an information security culture in Saudi Arabian organizations. We plan to use this framework to investigate whether security culture has emerged into practices in Saudi Arabian organizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the complex dynamic and uncertain characteristics of organisational employees who perform authorised or unauthorised information security activities is deemed to be a very important and challenging task. This paper presents a conceptual framework for classifying and organising the characteristics of organisational subjects involved in these information security practices. Our framework expands the traditional Human Behaviour and the Social Environment perspectives used in social work by identifying how knowledge, skills and individual preferences work to influence individual and group practices with respect to information security management. The classification of concepts and characteristics in the framework arises from a review of recent literature and is underpinned by theoretical models that explain these concepts and characteristics. Further, based upon an exploratory study of three case organisations in Saudi Arabia involving extensive interviews with senior managers, department managers, IT managers, information security officers, and IT staff; this article describes observed information security practices and identifies several factors which appear to be particularly important in influencing information security behaviour. These factors include values associated with national and organisational culture and how they manifest in practice, and activities related to information security management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This qualitative study views international students as information-using learners, through an information literacy lens. Focusing on the experiences of 25 international students at two Australian universities, the study investigates how international students use online information resources to learn, and identifies associated information literacy learning needs. An expanded critical incident approach provided the methodological framework for the study. Building on critical incident technique, this approach integrated a variety of concepts and research strategies. The investigation centred on real-life critical incidents experienced by the international students whilst using online resources for assignment purposes. Data collection involved semi-structured interviews and an observed online resource-using task. Inductive data analysis and interpretation enabled the creation of a multifaceted word picture of international students using online resources and a set of critical findings about their information literacy learning needs. The study’s key findings reveal: • the complexity of the international students’ experience of using online information resources to learn, which involves an interplay of their interactions with online resources, their affective and reflective responses to using them, and the cultural and linguistic dimensions of their information use. • the array of strengths as well as challenges that the international students experience in their information use and learning. • an apparent information literacy imbalance between the international students’ more developed information skills and less developed critical and strategic approaches to using information • the need for enhanced information literacy education that responds to international students’ identified information literacy needs. Responding to the findings, the study proposes an inclusive informed learning approach to support reflective information use and inclusive information literacy learning in culturally diverse higher education environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates self–Googling through the monitoring of search engine activities of users and adds to the few quantitative studies on this topic already in existence. We explore this phenomenon by answering the following questions: To what extent is the self–Googling visible in the usage of search engines; is any significant difference measurable between queries related to self–Googling and generic search queries; to what extent do self–Googling search requests match the selected personalised Web pages? To address these questions we explore the theory of narcissism in order to help define self–Googling and present the results from a 14–month online experiment using Google search engine usage data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).