281 resultados para Strain-Rate
Resumo:
The current study evaluated the effect of soluble dietary cellulose on growth, survival and digestive enzyme activity in three endemic, Australian freshwater crayfish species (redclaw: Cherax quadricarinatus, marron: C. tenuimanus, yabby: C. destructor). Separate individual feeding trials were conducted for late-stage juveniles from each species in an automated recirculating freshwater, culture system. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch, over a 12 week period. Redclaw fed with RD showed significantly higher (p<0.05) specific growth rates (SGR) compared with animals fed the TD, while SGR of marron and yabby fed the two diets were not significantly different. Expressed cellulase activity levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD (p<0.05). Amylase and protease activity in all three species were significantly higher in the animals fed with RD (p<0.05). These results indicate that test animals of all three species appear to utilize starch more efficiently than soluble dietary cellulose in their diet. The inclusion of 20% soluble cellulose in diets did not appear, however, to have a significant negative effect on growth rates.
Resumo:
Numerous Abaqus [1] finite element analyses have been carried out using various plasticity models to investigate the effect of friction force on the rail head in relation to both the development of the accumulated plastic strain (PEEQ) and the changes in the depth of PEEQ distribution in the wheel-rail contact. The normal force distribution on the rail head was assumed to be Hertzian. The tangential force was implemented as a fraction of the normal force in the subroutine. Each analysis was carried out for a single pass and the effect of various friction coefficient values has been observed.
Resumo:
Background/Aim Hamstring strain injuries (HSIs) have remained the most prevalent injury in the Australian football league (AFL) over the past 21 regular seasons. The impact of HSIs in sport is often expressed as regular season games missed due to injury. However the financial cost of athletes missing games due to injury has not been investigated. The aim of this report is to estimate the financial cost of games missed due to HSIs in the AFL. Method Data was collected using publically available information from the AFL’s injury report and the official AFL annual report for the past 10 competitive AFL seasons. Average athlete salary and injury epidemiology data was used to determine the average yearly financial cost of HSIs for AFL clubs and the average financial cost of a single HSI over this time period. Results Across the observed period, average yearly financial cost of HSIs per club increased by 71% compared to a 43% increase in average yearly athlete salary. Over the same time period the average financial cost of a single HSI increased by 56% from $25,603 in 2003 to $40,021 in 2012, despite little change in HSI rates during the period. Conclusion The observed increased financial cost of HSIs was ultimately explained by the failure of teams to decrease HSI rates, but coupled with increases in athlete salaries over the past 10 season. The information presented in this report will highlight the financial cost of HSIs and other sporting injuries, raising greater awareness and the need for further funding for research into injury prevention strategies to maximise economical return for investment in athletes.
Resumo:
Electrospun scaffolds manufactured using conventional electrospinning configurations have an intrinsic thickness limitation, due to a charge build-up at the collector. To overcome this limitation, an electrostatic lens has been developed that, at the same relative rate of deposition, focuses the polymer jet onto a smaller area of the collector, resulting in the fabrication of thick scaffolds within a shorter period of time. We also observed that a longer deposition time (up to 13 h, without the intervention of the operator) could be achieved when the electrostatic lens was utilised, compared to 9–10 h with a conventional processing set-up and also showed that fibre fusion was less likely to occur in the modified method. This had a significant impact on the mechanical properties, as the scaffolds obtained with the conventional process had a higher elastic modulus and ultimate stress and strain at short times. However, as the thickness of the scaffolds produced by the conventional electrospinning process increased, a 3-fold decrease in the mechanical properties was observed. This was in contrast to the modified method, which showed a continual increase in mechanical properties, with the properties of the scaffold finally having similar mechanical properties to the scaffolds obtained via the conventional process at longer times. This “focusing” device thus enabled the fabrication of thicker 3-dimensional electrospun scaffolds (of thicknesses up to 3.5 mm), representing an important step towards the production of scaffolds for tissue engineering large defect sites in a multitude of tissues.
Resumo:
The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.
Resumo:
Purpose To observe the incidence rates of hamstring strain injuries (HSIs) across different competition levels and ages during the Penn Relays Carnival. Methods Over a 3-year period all injuries treated by the medical staff were recorded. The type of injury, anatomic location, event in which the injury occurred, competition level and demographic data were documented. Absolute and relative HSI (per 1000 participants) were determined and odds ratios (OR) were calculated between genders, competition levels and events. Results Throughout the study period 48,473 athletes registered to participate in the Penn Relays Carnival, with 118 HSIs treated by the medical team. High school females displayed lesser risk of HSI than high school males (OR = 0.55, p = 0.021), and masters athletes were more likely than high school (OR = 4.26, p < 0.001) and college (OR = 3.55, p = 0.001) level athletes to suffer a HSI. The 4x400m relay displayed a greater likelihood of HSI compared to the 4x100m relay (OR = 1.77, p = 0.008). Conclusions High school males and masters levels athletes are most likely to suffer HSI, and there is higher risk in 400m events compared to 100m events.
Resumo:
In this paper we explore the relationship between monthly random breath testing (RBT) rates (per 1000 licensed drivers) and alcohol-related traffic crash (ARTC) rates over time, across two Australian states: Queensland and Western Australia. We analyse the RBT, ARTC and licensed driver rates across 12 years; however, due to administrative restrictions, we model ARTC rates against RBT rates for the period July 2004 to June 2009. The Queensland data reveals that the monthly ARTC rate is almost flat over the five year period. Based on the results of the analysis, an average of 5.5 ARTCs per 100,000 licensed drivers are observed across the study period. For the same period, the monthly rate of RBTs per 1000 licensed drivers is observed to be decreasing across the study with the results of the analysis revealing no significant variations in the data. The comparison between Western Australia and Queensland shows that Queensland's ARTC monthly percent change (MPC) is 0.014 compared to the MPC of 0.47 for Western Australia. While Queensland maintains a relatively flat ARTC rate, the ARTC rate in Western Australia is increasing. Our analysis reveals an inverse relationship between ARTC RBT rates, that for every 10% increase in the percentage of RBTs to licensed driver there is a 0.15 decrease in the rate of ARTCs per 100,000 licenced drivers. Moreover, in Western Australia, if the 2011 ratio of 1:2 (RBTs to annual number of licensed drivers) were to double to a ratio of 1:1, we estimate the number of monthly ARTCs would reduce by approximately 15. Based on these findings we believe that as the number of RBTs conducted increases the number of drivers willing to risk being detected for drinking driving decreases, because the perceived risk of being detected is considered greater. This is turn results in the number of ARTCs diminishing. The results of this study provide an important evidence base for policy decisions for RBT operations.
Resumo:
Purpose The objectives of this study were to examine the effect of 4-week moderate- and high-intensity interval training (MIIT and HIIT) on fat oxidation and the responses of blood lactate (BLa) and rating of perceived exertion (RPE). Methods Ten overweight/obese men (age = 29 ±3.7 years, BMI = 30.7 ±3.4 kg/m2) participated in a cross-over study of 4-week MIIT and HIIT training. The MIIT training sessions consisted of 5-min cycling stages at mechanical workloads 20% above and 20% below 45%VO2peak. The HIIT sessions consisted of intervals of 30-s work at 90%VO2peak and 30-s rest. Pre- and post-training assessments included VO2max using a graded exercise test (GXT) and fat oxidation using a 45-min constant-load test at 45%VO2max. BLa and RPE were also measured during the constant-load exercise test. Results There were no significant changes in body composition with either intervention. There were significant increases in fat oxidation after MIIT and HIIT (p ≤ 0.01), with no effect of intensity. BLa during the constant-load exercise test significantly decreased after MIIT and HIIT (p ≤ 0.01), and the difference between MIIT and HIIT was not significant (p = 0.09). RPE significantly decreased after HIIT greater than MIIT (p ≤ 0.05). Conclusion Interval training can increase fat oxidation with no effect of exercise intensity, but BLa and RPE decreased after HIIT to greater extent than MIIT.
Resumo:
Recent developments in wearable ECG technology have seen renewed interest in the use of Heart Rate Variability (HRV) feedback for stress management. Yet, little is know about the efficacy of such interventions. Positive reappraisal is an emotion regulation strategy that involves changing the way a situation is construed to decrease emotional impact. We sought to test the effectiveness of an intervention that used feedback on HRV data to prompt positive reappraisal during a stressful work task. Participants (N=122) completed two 20-minute trials of an inbox activity. In-between the first and the second trial participants were assigned to the waitlist control condition, a positive reappraisal via psycho-education condition, or a positive reappraisal via HRV feedback condition. Results revealed that using HRV data to frame a positive reappraisal message is more effective than using psycho-education (or no intervention)–especially for increasing positive mood and reducing arousal.
Resumo:
We aimed to evaluate the effect of the appointment of a dedicated specialist thoracic surgeon on surgical practice for lung cancer previously served by cardio-thoracic surgeons. Outcomes were compared for the 240 patients undergoing surgical resection for lung cancer in two distinct 3-year periods: Group A: 65 patients, 1994-1996 (pre-specialist); Group B: 175 patients, 1997-1999 (post-specialist). The changes implemented resulted in a significant increase in resection rate (from 12.2 to 23.4%, P<0.001), operations in the elderly (over 75 years) and extended resections. There were no significant differences in stage distribution, in-hospital mortality or stage-specific survival after surgery. Lung cancer surgery provided by specialists within a multidisciplinary team resulted in increased surgical resection rates without compromising outcome. Our results strengthen the case for disease-specific specialists in the treatment of lung cancer. © 2004 Published by Elsevier Ireland Ltd.
Resumo:
This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.
Resumo:
Background. This study evaluated the time course of recovery of transverse strain in the Achilles and patellar tendons following a bout of resistance exercise. Methods. Seventeen healthy adults underwent sonographic examination of the right patellar (n = 9) or Achilles (n = 8) tendons immediately prior to and following 90 repetitions of weight–bearing exercise. Quadriceps and gastrocnemius exercise were performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the tendon enthesis and transverse strain was repeatedly monitored over a 24 hour recovery period. Results. Resistance exercise resulted in an immediate decrease in Achilles (t7 = 10.6, P<.01) and patellar (t8 = 8.9, P<.01) tendon thickness, resulting in an average transverse strain of 0.14 ± 0.04 and 0.18 ± 0.05. While the average strain was not significantly different between tendons, older age was associated with a reduced transverse strain response (r=0.63, P<.01). Recovery of transverse strain, in contrast, was prolonged compared with the duration of loading and exponential in nature. The mean primary recovery time was not significantly different between Achilles (6.5 ± 3.2 hours) and patellar (7.1 ± 3.2 hours) tendons and body weight accounted for 62% and 64% of the variation in recovery time, respectively. Discussion. Despite structural and biochemical differences between the Achilles and patellar tendons [1], the mechanisms underlying transverse creep–recovery in vivo appear similar and are highly time dependent. Primary recovery required about 7 hours in healthy tendons, with full recovery requiring up to 24 hours. These in vivo recovery times are similar to those reported for axial creep recovery of the vertebral disc in vitro [2], and may be used clinically to guide physical activity to rest ratios in healthy adults. Optimal ratios for high–stress tendons in clinical populations, however, remain unknown and require further attention in light of the knowledge gained in this study.
Resumo:
Machine vision is emerging as a viable sensing approach for mid-air collision avoidance (particularly for small to medium aircraft such as unmanned aerial vehicles). In this paper, using relative entropy rate concepts, we propose and investigate a new change detection approach that uses hidden Markov model filters to sequentially detect aircraft manoeuvres from morphologically processed image sequences. Experiments using simulated and airborne image sequences illustrate the performance of our proposed algorithm in comparison to other sequential change detection approaches applied to this application.