342 resultados para Speculative attacks
Resumo:
Streamciphers are common cryptographic algorithms used to protect the confidentiality of frame-based communications like mobile phone conversations and Internet traffic. Streamciphers are ideal cryptographic algorithms to encrypt these types of traffic as they have the potential to encrypt them quickly and securely, and have low error propagation. The main objective of this thesis is to determine whether structural features of keystream generators affect the security provided by stream ciphers.These structural features pertain to the state-update and output functions used in keystream generators. Using linear sequences as keystream to encrypt messages is known to be insecure. Modern keystream generators use nonlinear sequences as keystream.The nonlinearity can be introduced through a keystream generator's state-update function, output function, or both. The first contribution of this thesis relates to nonlinear sequences produced by the well-known Trivium stream cipher. Trivium is one of the stream ciphers selected in a final portfolio resulting from a multi-year project in Europe called the ecrypt project. Trivium's structural simplicity makes it a popular cipher to cryptanalyse, but to date, there are no attacks in the public literature which are faster than exhaustive keysearch. Algebraic analyses are performed on the Trivium stream cipher, which uses a nonlinear state-update and linear output function to produce keystream. Two algebraic investigations are performed: an examination of the sliding property in the initialisation process and algebraic analyses of Trivium-like streamciphers using a combination of the algebraic techniques previously applied separately by Berbain et al. and Raddum. For certain iterations of Trivium's state-update function, we examine the sets of slid pairs, looking particularly to form chains of slid pairs. No chains exist for a small number of iterations.This has implications for the period of keystreams produced by Trivium. Secondly, using our combination of the methods of Berbain et al. and Raddum, we analysed Trivium-like ciphers and improved on previous on previous analysis with regards to forming systems of equations on these ciphers. Using these new systems of equations, we were able to successfully recover the initial state of Bivium-A.The attack complexity for Bivium-B and Trivium were, however, worse than exhaustive keysearch. We also show that the selection of stages which are used as input to the output function and the size of registers which are used in the construction of the system of equations affect the success of the attack. The second contribution of this thesis is the examination of state convergence. State convergence is an undesirable characteristic in keystream generators for stream ciphers, as it implies that the effective session key size of the stream cipher is smaller than the designers intended. We identify methods which can be used to detect state convergence. As a case study, theMixer streamcipher, which uses nonlinear state-update and output functions to produce keystream, is analysed. Mixer is found to suffer from state convergence as the state-update function used in its initialisation process is not one-to-one. A discussion of several other streamciphers which are known to suffer from state convergence is given. From our analysis of these stream ciphers, three mechanisms which can cause state convergence are identified.The effect state convergence can have on stream cipher cryptanalysis is examined. We show that state convergence can have a positive effect if the goal of the attacker is to recover the initial state of the keystream generator. The third contribution of this thesis is the examination of the distributions of bit patterns in the sequences produced by nonlinear filter generators (NLFGs) and linearly filtered nonlinear feedback shift registers. We show that the selection of stages used as input to a keystream generator's output function can affect the distribution of bit patterns in sequences produced by these keystreamgenerators, and that the effect differs for nonlinear filter generators and linearly filtered nonlinear feedback shift registers. In the case of NLFGs, the keystream sequences produced when the output functions take inputs from consecutive register stages are less uniform than sequences produced by NLFGs whose output functions take inputs from unevenly spaced register stages. The opposite is true for keystream sequences produced by linearly filtered nonlinear feedback shift registers.
Resumo:
Background Asthma is a serious global health problem. However, few studies have investigated the relationship between cold spells and pediatric outpatient visits for asthma. Objective To examine the association between cold spells and pediatric outpatient visits for asthma in Shanghai, China. Methods We collected daily data on pediatric outpatient visits for asthma, mean temperature, relative humidity, and ozone from Shanghai between 1 January 2007 and 31 December 2009. We defined cold spells as four or more consecutive days with temperature below the 5th percentile of temperature during 2007–2009. We used a Poisson regression model to examine the impact of temperature on pediatric outpatient visits for asthma in cold seasons during 2007 and 2009. We examined the effect of cold spells on asthma compared with non-cold spell days. Results There was a significant relationship between cold temperatures and pediatric outpatient visits for asthma. The cold effects on children's asthma were observed at different lags. The lower the temperatures, the higher the risk for asthma attacks among children. Conclusion Cold temperatures, particularly cold spells, significantly increase the risk of pediatric outpatient visits for asthma. The findings suggest that asthma children need to be better protected from cold effects in winter.
Resumo:
A fundamental part of many authentication protocols which authenticate a party to a human involves the human recognizing or otherwise processing a message received from the party. Examples include typical implementations of Verified by Visa in which a message, previously stored by the human at a bank, is sent by the bank to the human to authenticate the bank to the human; or the expectation that humans will recognize or verify an extended validation certificate in a HTTPS context. This paper presents general definitions and building blocks for the modelling and analysis of human recognition in authentication protocols, allowing the creation of proofs for protocols which include humans. We cover both generalized trawling and human-specific targeted attacks. As examples of the range of uses of our construction, we use the model presented in this paper to prove the security of a mutual authentication login protocol and a human-assisted device pairing protocol.
Resumo:
This paper presents a model for the generation of a MAC tag using a stream cipher. The input message is used indirectly to control segments of the keystream that form the MAC tag. Several recent proposals can be considered as instances of this general model, as they all perform message accumulation in this way. However, they use slightly different processes in the message preparation and finalisation phases. We examine the security of this model for different options and against different types of attack, and conclude that the indirect injection model can be used to generate MAC tags securely for certain combinations of options. Careful consideration is required at the design stage to avoid combinations of options that result in susceptibility to forgery attacks. Additionally, some implementations may be vulnerable to side-channel attacks if used in Authenticated Encryption (AE) algorithms. We give design recommendations to provide resistance to these attacks for proposals following this model.
Resumo:
Non-linear feedback shift register (NLFSR) ciphers are cryptographic tools of choice of the industry especially for mobile communication. Their attractive feature is a high efficiency when implemented in hardware or software. However, the main problem of NLFSR ciphers is that their security is still not well investigated. The paper makes a progress in the study of the security of NLFSR ciphers. In particular, we show a distinguishing attack on linearly filtered NLFSR (or LF-NLFSR) ciphers. We extend the attack to a linear combination of LF-NLFSRs. We investigate the security of a modified version of the Grain stream cipher and show its vulnerability to both key recovery and distinguishing attacks.
Resumo:
Trivium is a bit-based stream cipher in the final portfolio of the eSTREAM project. In this paper, we apply the algebraic attack approach of Berbain et al. to Trivium-like ciphers and perform new analyses on them. We demonstrate a new algebraic attack on Bivium-A. This attack requires less time and memory than previous techniques to recover Bivium-A's initial state. Though our attacks on Bivium-B, Trivium and Trivium-N are worse than exhaustive keysearch, the systems of equations which are constructed are smaller and less complex compared to previous algebraic analyses. We also answer an open question posed by Berbain et al. on the feasibility of applying their technique on Trivium-like ciphers. Factors which can affect the complexity of our attack on Trivium-like ciphers are discussed in detail. Analysis of Bivium-B and Trivium-N are omitted from this manuscript. The full paper is available on the IACR ePrint Archive.
Resumo:
In many applications, where encrypted traffic flows from an open (public) domain to a protected (private) domain, there exists a gateway that bridges the two domains and faithfully forwards the incoming traffic to the receiver. We observe that indistinguishability against (adaptive) chosen-ciphertext attacks (IND-CCA), which is a mandatory goal in face of active attacks in a public domain, can be essentially relaxed to indistinguishability against chosen-plaintext attacks (IND-CPA) for ciphertexts once they pass the gateway that acts as an IND-CCA/CPA filter by first checking the validity of an incoming IND-CCA ciphertext, then transforming it (if valid) into an IND-CPA ciphertext, and forwarding the latter to the recipient in the private domain. “Non-trivial filtering'' can result in reduced decryption costs on the receivers' side. We identify a class of encryption schemes with publicly verifiable ciphertexts that admit generic constructions of (non-trivial) IND-CCA/CPA filters. These schemes are characterized by existence of public algorithms that can distinguish between valid and invalid ciphertexts. To this end, we formally define (non-trivial) public verifiability of ciphertexts for general encryption schemes, key encapsulation mechanisms, and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption flavours. We further analyze the security impact of public verifiability and discuss generic transformations and concrete constructions that enjoy this property.
Resumo:
The notion of plaintext awareness ( PA ) has many applications in public key cryptography: it offers unique, stand-alone security guarantees for public key encryption schemes, has been used as a sufficient condition for proving indistinguishability against adaptive chosen-ciphertext attacks ( IND-CCA ), and can be used to construct privacy-preserving protocols such as deniable authentication. Unlike many other security notions, plaintext awareness is very fragile when it comes to differences between the random oracle and standard models; for example, many implications involving PA in the random oracle model are not valid in the standard model and vice versa. Similarly, strategies for proving PA of schemes in one model cannot be adapted to the other model. Existing research addresses PA in detail only in the public key setting. This paper gives the first formal exploration of plaintext awareness in the identity-based setting and, as initial work, proceeds in the random oracle model. The focus is laid mainly on identity-based key encapsulation mechanisms (IB-KEMs), for which the paper presents the first definitions of plaintext awareness, highlights the role of PA in proof strategies of IND-CCA security, and explores relationships between PA and other security properties. On the practical side, our work offers the first, highly efficient, general approach for building IB-KEMs that are simultaneously plaintext-aware and IND-CCA -secure. Our construction is inspired by the Fujisaki-Okamoto (FO) transform, but demands weaker and more natural properties of its building blocks. This result comes from a new look at the notion of γ -uniformity that was inherent in the original FO transform. We show that for IB-KEMs (and PK-KEMs), this assumption can be replaced with a weaker computational notion, which is in fact implied by one-wayness. Finally, we give the first concrete IB-KEM scheme that is PA and IND-CCA -secure by applying our construction to a popular IB-KEM and optimizing it for better performance.
Resumo:
Two hundred million people are displaced annually due to natural disasters with a further one billion living in inadequate conditions in urban areas. Architects have a responsibility to respond to this statistic as the effects of natural and social disasters become more visibly catastrophic when paired with population rise. The research discussed in this paper initially questions and considers how digital tools can be employed to enhance rebuilding processes, but still achieve sensitive, culturally appropriate and accepted built solutions. Secondly the paper reflects on the impact ‘real-world’ projects have on architectural education. Research aspirations encouraged an atypical ‘research by design’ methodology involving a focused case study in the recently devastated village Keigold, Ranongga, Solomon Islands. Through this qualitative approach specific place data and the accounts of those affected were documented through naturalistic and archival methods of observation and participation. Findings reveal a number of unanticipated results which would have been otherwise undetected if field research within the design and rebuilding process was not undertaken, reflecting the importance of place specific research in the design process. Ultimately, the study proves that it is critical for issues of disaster to be addressed on a local rather than global scale; decisions cannot be speculative, or solved at a distance, but require intensive collaborative work with communities to achieve optimum solutions. Architectural education and design studios would continue to benefit from focused community engagement and field research within the design process.
Resumo:
TiO2 nanofibers with different crystal phases have been discovered to be efficient catalysts for the transesterification of alcohols with dimethyl carbonate to produce corresponding methyl carbonates. Advantages of this catalytic system include excellent selectivity (>99%), general suitability to alcohols, reusability and ease of preparation and separation of fibrous catalysts. Activities of TiO2 catalysts were found to correlate with their crystal phases which results in different absorption abilities and activation energies on the catalyst surfaces. The kinetic isotope effect (KIE) investigation identified the rate-determining step, and the isotope labeling of oxygen-18 of benzyl alcohol clearly demonstrated the reaction pathway. Finally, the transesterification mechanism of alcohols with dimethyl carbonate catalyzed by TiO2 nanofibers was proposed, in which the alcohol released the proton to form benzyl alcoholic anion, and subsequently the anion attacks the carbonyl carbon of dimethyl carbonate to produce the target product of benzyl methyl carbonate.
Resumo:
This paper presents a vulnerability within the generic object oriented substation event (GOOSE) communication protocol. It describes an exploit of the vulnerability and proposes a number of attack variants. The attacks sends GOOSE frames containing higher status numbers to the receiving intelligent electronic device (IED). This prevents legitimate GOOSE frames from being processed and effectively causes a hijacking of the communication channel, which can be used to implement a denial–of–service (DoS) or manipulate the subscriber (unless a status number roll-over occurs). The authors refer to this attack as a poisoning of the subscriber. A number of GOOSE poisoning attacks are evaluated experimentally on a test bed and demonstrated to be successful.
Resumo:
The Modicon Communication Bus (Modbus) protocol is one of the most commonly used protocols in industrial control systems. Modbus was not designed to provide security. This paper confirms that the Modbus protocol is vulnerable to flooding attacks. These attacks involve injection of commands that result in disrupting the normal operation of the control system. This paper describes a set of experiments that shows that an anomaly-based change detection algorithm and signature-based Snort threshold module are capable of detecting Modbus flooding attacks. In comparing these intrusion detection techniques, we find that the signature-based detection requires a carefully selected threshold value, and that the anomaly-based change detection algorithm may have a short delay before detecting the attacks depending on the parameters used. In addition, we also generate a network traffic dataset of flooding attacks on the Modbus control system protocol.
Resumo:
For decades Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) have used computers to monitor and control physical processes in many critical industries, including electricity generation, gas pipelines, water distribution, waste treatment, communications and transportation. Increasingly these systems are interconnected with corporate networks via the Internet, making them vulnerable and exposed to the same risks as those experiencing cyber-attacks on a conventional network. Very often SCADA networks services are viewed as a specialty subject, more relevant to engineers than standard IT personnel. Educators from two Australian universities have recognised these cultural issues and highlighted the gap between specialists with SCADA systems engineering skills and the specialists in network security with IT background. This paper describes a learning approach designed to help students to bridge this gap, gain theoretical knowledge of SCADA systems' vulnerabilities to cyber-attacks via experiential learning and acquire practical skills through actively participating in hands-on exercises.
Resumo:
Basing signature schemes on strong lattice problems has been a long standing open issue. Today, two families of lattice-based signature schemes are known: the ones based on the hash-and-sign construction of Gentry et al.; and Lyubashevsky’s schemes, which are based on the Fiat-Shamir framework. In this paper we show for the first time how to adapt the schemes of Lyubashevsky to the ring signature setting. In particular we transform the scheme of ASIACRYPT 2009 into a ring signature scheme that provides strong properties of security under the random oracle model. Anonymity is ensured in the sense that signatures of different users are within negligible statistical distance even under full key exposure. In fact, the scheme satisfies a notion which is stronger than the classical full key exposure setting as even if the keypair of the signing user is adversarially chosen, the statistical distance between signatures of different users remains negligible. Considering unforgeability, the best lattice-based ring signature schemes provide either unforgeability against arbitrary chosen subring attacks or insider corruption in log-sized rings. In this paper we present two variants of our scheme. In the basic one, unforgeability is ensured in those two settings. Increasing signature and key sizes by a factor k (typically 80 − 100), we provide a variant in which unforgeability is ensured against insider corruption attacks for arbitrary rings. The technique used is pretty general and can be adapted to other existing schemes.
Resumo:
Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.