313 resultados para Northern Areas (Pakistan)--Maps
Resumo:
Currently two different fatigue tests are being used to investigate the fatigue susceptibility of roof claddings in the cyclone prone areas of Australia. In order to resolve this issue a detailed investigation was conducted to study the nature of cyclonic wind forces using wind tunnel testing and computer modelling and the fatigue behaviour of metal roof claddings using structural testing. This led to the development of an accurate, but complicated loading matrix for a design cyclone. Based on this matrix, a simplified low-high-low loading sequence has been developed for the testing of roofing systems in cyclone prone areas. This paper first reviews the currently used fatigue loading sequences, then presents details of the cyclonic wind loading matrix and finally the development of the new simplified loading sequence. This simplified sequence should become the only suitable test for most of the cyclone prone areas of Australia covered by Region C which suffers from Category 4 cyclones. For Region D which suffers from Category 5 cyclones, the same loading sequence with 20% increased cycles has been recommended. An experimental programme to validate the new simplified loading sequence has been proposed.
Resumo:
Traditionally, infectious diseases and under-nutrition have been considered major health problems in Sri Lanka with little attention paid to obesity and associated non-communicable diseases (NCDs). However, the recent Sri Lanka Diabetes and Cardiovascular Study (SLDCS) reported the epidemic level of obesity, diabetes and metabolic syndrome. Moreover, obesity-associated NCDs is the leading cause of death in Sri Lanka and there is an exponential increase in hospitalization due to NCDs adversely affecting the development of the country. Despite Sri Lanka having a very high prevalence of NCDs and associated mortality, little is known about the causative factors for this burden. It is widely believed that the global NCD epidemic is associated with recent lifestyle changes, especially dietary factors. In the absence of sufficient data on dietary habits in Sri Lanka, successful interventions to manage these serious health issues would not be possible. In view of the current situation the dietary survey was undertaken to assess the intakes of energy, macro-nutrients and selected other nutrients with respect to socio demographic characteristics and the nutritional status of Sri Lankan adults especially focusing on obesity. Another aim of this study was to develop and validate a culturally specific food frequency questionnaire (FFQ) to assess dietary risk factors of NCDs in Sri Lankan adults. Data were collected from a subset of the national SLDCS using a multi-stage, stratified, random sampling procedure (n=500). However, data collection in the SLDCS was affected by the prevailing civil war which resulted in no data being collected from Northern and Eastern provinces. To obtain a nationally representative sample, additional subjects (n=100) were later recruited from the two provinces using similar selection criteria. Ethical Approval for this study was obtained from the Ethical Review Committee, Faculty of Medicine, University of Colombo, Sri Lanka and informed consent was obtained from the subjects before data were collected. Dietary data were obtained using the 24-h Dietary Recall (24HDR) method. Subjects were asked to recall all foods and beverages, consumed over the previous 24-hour period. Respondents were probed for the types of foods and food preparation methods. For the FFQ validation study, a 7-day weight diet record (7-d WDR) was used as the reference method. All foods recorded in the 24 HDR were converted into grams and then intake of energy and nutrients were analysed using NutriSurvey 2007 (EBISpro, Germany) which was modified for Sri Lankan food recipes. Socio-demographic details and body weight perception were collected from interviewer-administrated questionnaire. BMI was calculated and overweight (BMI ≥23 kg.m-2), obesity (BMI ≥25 kg.m-2) and abdominal obesity (Men: WC ≥ 90 cm; Women: WC ≥ 80 cm) were categorized according to Asia-pacific anthropometric cut-offs. The SPSS v. 16 for Windows and Minitab v10 were used for statistical analysis purposes. From a total of 600 eligible subjects, 491 (81.8%) participated of whom 34.5% (n=169) were males. Subjects were well distributed among different socio-economic parameters. A total of 312 different food items were recorded and nutritionists grouped similar food items which resulted in a total of 178 items. After performing step-wise multiple regression, 93 foods explained 90% of the variance for total energy intake, carbohydrates, protein, total fat and dietary fibre. Finally, 90 food items and 12 photographs were selected. Seventy-seven subjects completed (response rate = 65%) the FFQ and 7-day WDR. Estimated mean energy intake (SD) from FFQ (1794±398 kcal) and 7DWR (1698±333 kcal, P<0.001) was significantly different due to a significant overestimation of carbohydrate (~10 g/d, P<0.001) and to some extent fat (~5 g/d, NS). Significant positive correlations were found between the FFQ and 7DWR for energy (r = 0.39), carbohydrate (r = 0.47), protein (r = 0.26), fat (r =0.17) and dietary fiber (r = 0.32). Bland-Altman graphs indicated fairly good agreement between methods with no relationship between bias and average intake of each nutrient examined. The findings from the nutrition survey showed on average, Sri Lankan adults consumed over 14 portions of starch/d; moreover, males consumed 5 more portions of cereal than females. Sri Lankan adults consumed on average 3.56 portions of added sugars/d. Moreover, mean daily intake of fruit (0.43) and vegetable (1.73) portions was well below minimum dietary recommendations (fruits 2 portions/d; vegetables 3 portions/d). The total fruit and vegetable intake was 2.16 portions/d. Daily consumption of meat or alternatives was 1.75 portions and the sum of meat and pulses was 2.78 portions/d. Starchy foods were consumed by all participants and over 88% met the minimum daily recommendations. Importantly, nearly 70% of adults exceeded the maximum daily recommendation for starch (11portions/d) and a considerable proportion consumed larger numbers of starch servings daily, particularly men. More than 12% of men consumed over 25 starch servings/d. In contrast to their starch consumption, participants reported very low intakes of other food groups. Only 11.6%, 2.1% and 3.5% of adults consumed the minimum daily recommended servings of vegetables, fruits, and fruits and vegetables combined, respectively. Six out of ten adult Sri Lankans sampled did not consume any fruits. Milk and dairy consumption was extremely low; over a third of the population did not consume any dairy products and less than 1% of adults consumed 2 portions of dairy/d. A quarter of Sri Lankans did not report consumption of meat and pulses. Regarding protein consumption, 36.2% attained the minimum Sri Lankan recommendation for protein; and significantly more men than women achieved the recommendation of ≥3 servings of meat or alternatives daily (men 42.6%, women 32.8%; P<0.05). Over 70% of energy was derived from carbohydrates (Male:72.8±6.4%, Female:73.9±6.7%), followed by fat (Male:19.9±6.1%, Female:18.5±5.7%) and proteins (Male:10.6±2.1%, Female:10.9±5.6%). The average intake of dietary fiber was 21.3 g/day and 16.3 g/day for males and females, respectively. There was a significant difference in nutritional intake related to ethnicities, areas of residence, education levels and BMI categories. Similarly, dietary diversity was significantly associated with several socio-economic parameters among Sri Lankan adults. Adults with BMI ≥25 kg.m-2 and abdominally obese Sri Lankan adults had the highest diet diversity values. Age-adjusted prevalence (95% confidence interval) of overweight, obesity, and abdominal obesity among Sri Lankan adults were 17.1% (13.8-20.7), 28.8% (24.8-33.1), and 30.8% (26.8-35.2), respectively. Men, compared with women, were less overweight, 14.2% (9.4-20.5) versus 18.5% (14.4-23.3), P = 0.03, less obese, 21.0% (14.9-27.7) versus 32.7% (27.6-38.2), P < .05; and less abdominally obese, 11.9% (7.4-17.8) versus 40.6% (35.1-46.2), P < .05. Although, prevalence of obesity has reached to epidemic level body weight misperception was common among Sri Lankan adults. Two-thirds of overweight males and 44.7% of females considered themselves as in "about right weight". Over one third of both male and female obese subjects perceived themselves as "about right weight" or "underweight". Nearly 32% of centrally obese men and women perceived that their waist circumference is about right. People who perceived overweight or very overweight (n = 154) only 63.6% tried to lose their body weight (n = 98), and quarter of adults seek advices from professionals (n = 39). A number of important conclusions can be drawn from this research project. Firstly, the newly developed FFQ is an acceptable tool for assessing the nutrient intake of Sri Lankans and will assist proper categorization of individuals by dietary exposure. Secondly, a substantial proportion of the Sri Lankan population does not consume a varied and balanced diet, which is suggestive of a close association between the nutrition-related NCDs in the country and unhealthy eating habits. Moreover, dietary diversity is positively associated with several socio-demographic characteristics and obesity among Sri Lankan adults. Lastly, although obesity is a major health issue among Sri Lankan adults, body weight misperception was common among underweight, healthy weight, overweight, and obese adults in Sri Lanka. Over 2/3 of overweight and 1/3 of obese Sri Lankan adults believe that they are in "right weight" or "under-weight" categories.
Resumo:
This paper describes current issues in chemotherapy nursing practice in rural and remote Australia. There is a trend to refer chemotherapy clients back to their rural and remote health facility for treatment from major oncology centres in Australia. However, it is increasingly apparent that the majority of nurses administering chemotherapy in smaller centres lack the theoretical and clinical knowledge to ensure optimum client outcomes and nurse/client safety. There are also issues unique to rural and remote life which will influence optimum chemotherapy service delivery. The research program described in the paper will ascertain the education requirements of rural and remote nurses administering chemotherapy and the design and delivery of a chemotherapy education package specific to the rural and remote context. Similar programs will ensure the best standards of chemotherapy practice in non-metropolitan areas by enhancing the practical and theoretical knowledge base of rural and remote nurses.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
Objective To determine the burden of hospitalised, radiologically confirmed pneumonia (World Health Organization protocol) in Northern Territory Indigenous children. Design, setting and participants Historical, observational study of all hospital admissions for any diagnosis of NT resident Indigenous children, aged between >= 29 days and < 5 years, 1 April 1997 to 31 March 2005. Intervention All chest radiographs taken during these admissions, regardless of diagnosis, were assessed for pneumonia in accordance with the WHO protocol. Main outcome measure The primary outcome was endpoint consolidation (dense fluffy consolidation [alveolar infiltrate] of a portion of a lobe or the entire lung) present on a chest radiograph within 3 days of hospitalisation. Results We analysed data on 24 115 hospitalised episodes of care for 9492 children and 13 683 chest radiographs. The average annual cumulative incidence of endpoint consolidation was 26.6 per 1000 population per year (95% Cl, 25.3-27.9); 57.5 per 1000 per year in infants aged 1-11 months, 38.3 per 1000 per year in those aged 12-23 months, and 13.3 per 1000 per year in those aged 24-59 months. In all age groups, rates of endpoint consolidation in children in the arid southern region of NT were about twice that of children in the tropical northern region. Conclusion The rates of severe pneumonia in hospitalised NT Indigenous children are among the highest reported in the world. Reducing this unacceptable burden of disease should be a national health priority.
Resumo:
Objective To describe the epidemiology of acute lower respiratory infection (ALRI) and bronchiectasis in Northern Territory Indigenous infants hospitalised in the first year of life. Design A historical cohort study constructed from the NT Hospital Discharge Dataset and the NT Imm(u)nisation Register. Participants and setting All NT resident Indigenous infants, born 1 January 1999 to 31 December 2004, admitted to NT public hospitals and followed up to 12 months of age. Main outcome measures Incidence of ALRI and bronchiectasis (ICD-10-AM codes) and radiologically confirmed pneumonia (World Health Organization protocol). Results Data on 9295 infants, 8498 child-years of observation and 15 948 hospitalised episodes of care were analysed. ALRI incidence was 426.7 episodes per 1000 child-years (95% Cl, 416.2-437.2). Incidence rates were two times higher (relative risk, 2.12; 95% Cl, 1.98-2.27) for infants in Central Australia compared with those in the Top End. The median age at first admission for an ALRI was 4.6 months (interquartile range, 2.6-7.3). Bronchiolitis accounted for most of the disease burden, with a rate of 227 per 1000 child-years. The incidence of first diagnosis of bronchiectasis was 1.18 per 1000 child-years (95% Cl, 0.60-2.16). One or more key comorbidities were present in 1445 of the 3227 (44.8%) episodes of care for ALRI. Conclusions Rates of ALRI and bronchiectasis in NT Indigenous infants are excessive, with early onset, frequent repeat episodes, and a high prevalence of comorbidities. These high rates of disease demand urgent attention.
Resumo:
On 6 May 2001, a 67-year-old Australian born, Caucasian male presented to the Emergency Department of the Austin and Repatriation Medical Centre (A&RMC) with a 3 day history of fever, lethargy and confusion. This occurred one week after returning from a trip to the Northern Territory. His previous medical problems included ischaemic heart disease, a repaired abdominal aortic aneurysm, hypertension, hyperlipidaemia and congestive cardiac failure. He smoked 20 cigarettes per day and had a history of heavy alcohol consumption. He had no history of diabetes. His medications were aspirin, frusemide, lisinopril, simvastatin, and a nitroglycerol patch. Fifty years ago, he had an adverse reaction to penicillin with angioedema and an urticarial rash. Four weeks before admission he went on a fishing trip in the Northern Territory. He travelled by road, through outback regions of Victoria, New South Wales, Queensland, the Northern Territory and South Australia, spending time in Daly River, Coolum, Darwin, Dunmarra, Avon Downs, Innaminka and Mataranka. He was away for 3 weeks and camped in tents or outside in a swag throughout the trip. He recalls numerous times where he was exposed to mosquitoes with large numbers of bites at Dunmarra. During the time away, he remained well as did his 5 travelling companions. There was...
Resumo:
In early April 1998 the Centre for Disease Control (CDC) in Darwin was notified of a case with positive dengue serology. The illness appeared to have been acquired in the Northern Territory (NT). Because dengue is not endemic to the NT, locally acquired infection has significant public health implications, particularly for vector identification and control to limit the spread of infection. Dengue IgM serology was positive on two occasions but the illness was eventually presumptively identified as Kokobera infection. This case illustrates some important points about serology. The interpretation of flavivirus serology is complex and can be misleading, despite recent improvements. The best method of determining the cause of infection is still attempting to reconcile clinical illness details with incubation times and vector presence, as well as laboratory results. This approach ultimately justified the initial period of waiting for confirmatory results in this case, before the institution of public health measures necessary for a true case of dengue.
Resumo:
A varicella-zoster virus (VZV) vaccine is available overseas, and universal immunisation in childhood is recommended in the United States.1 Any decision to introduce the vaccine to Australia must be based on an assessment of potential benefits and harms. While there has been some assessment of VZV significance in populations in southern Australia,2 the impact on the NT population is not known. It is not a notifiable condition and information on morbidity and mortality is limited to a few data collections. These are hospital separation data, deaths registers, and in 1995 the inclusion of VZV congenital and neonatal complications in the Australian Paediatric Surveillance System. Hospital separation data were analysed to assess the importance of VZV as a cause of severe morbidity and mortality in the NT population.
Resumo:
Outbreaks of an acute, severe, encephalitic illness, clinically similar to Japanese and St. Louis encephalitis, occurred in rural areas of southeastern Australia in 1917, 1918, 1922, 1925, 1951, and 1974[1,9,14-16] and in north and northwestern Australia in 1981, 1993, and 2000.[8,12,41] Approximately 420 cases were reported in these nine outbreaks.[41] They are thought to represent a single entity for which various names (Australian X disease, Murray Valley encephalitis, Australian encephalitis) have been used. Twenty-two cases were diagnosed in the 5 years between 2007 and 2011; three were fatal, and one of the fatalities occurred in a Canadian tourist on return from a holiday in northern Australia. Case-fatality rates, as high as 70 percent in the early years,[9,11] declined to 20 percent in the 1974 outbreak and have remained at about this level since then.[5,10,12] However, significant residual neurologic disability occurs in as many as 50 percent of survivors.[10,12] The presence of this disease in Papua New Guinea was confirmed in 1956.[20] The causative virus was transmitted to experimental animals as early as 1918,[6,11] although those strains could not be maintained. The definitive isolation and characterization of Murray Valley encephalitis virus in 1951[19] led to epidemiologic studies that suggested its survival in bird-mosquito cycles in northern Australia but not in the area of epidemic occurrence in southern Australia.[1] Murray Valley encephalitis is caused by Murray Valley encephalitis virus. In an effort to dissociate a disease from a specific locality, the term Australian encephalitis was proposed by residents of Murray Valley for the disease caused by Murray Valley encephalitis virus. Some researchers subsequently have attempted to expand the term Australian encephalitis to include encephalitis caused by any Australian arbovirus. Because the term Australian encephalitis has no scientific validity and is ambiguous, it should not be used.