286 resultados para Green chemistry,
Resumo:
Large, osseous, segmental defects heal poorly. Muscle has a propensity to form bone when exposed to an osteogenic stimulus such as that provided by transfer and expression of cDNA encoding bone morphogenetic protein-2 (BMP-2). The present study evaluated the ability of genetically modified, autologous muscle to heal large cranial defects in rats. Autologous grafts (8 mm � 2 mm) were punched from the biceps femoris muscle and transduced intraoperatively with recombinant adenovirus vector containing human BMP-2 or green fluorescent protein cDNA. While the muscle biopsies were incubating with the vector, a central parietal 8 mm defect was surgically created in the calvarium of the same animal. The gene-activated muscle graft was then implanted into the cranial defect. After 8 weeks, crania were examined radiographically, histologically, and by micro-computed tomography and dual energy X-ray absorptiometry. Although none of the defects were completely healed in this time, muscle grafts expressing BMP-2 deposited more than twice as much new bone as controls. Histology confirmed the anatomical integrity of the newly formed bone, which was comparable in thickness and mineral density to the original cranial bone. This study confirms the in vivo osteogenic properties of genetically modified muscle and suggests novel strategies for healing bone. � 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1095–1102, 2012
Resumo:
An in vivo screen has been devised for NF-κB p50 activity in Escherichia coli exploiting the ability of the mammalian transcription factor to emulate a prokaryotic repressor. Active intracellular p50 was shown to repress the expression of a green fluorescent protein reporter gene allowing for visual screening of colonies expressing active p50 on agar plates. A library of mutants was constructed in which the residues Y267, L269, A308 and V310 of the dimer interface were simultaneously randomised and twenty-five novel functional interfaces were selected which repressed the reporter gene to similar levels as the wild-type protein. The leucine-269 alanine-308 core was repeatedly, but not exclusively, selected from the library whilst a diversity of predominantly non-polar residues were selected at positions 267 and 310. These results indicate that L269 and A308 may form a hot spot of interaction and allow an insight into the processes of dimer selectivity and evolution within this family of transcription factors.
Resumo:
An investigation of the drying of spherical food particles was performed, using peas as the model material. In the development of a mathematical model for drying curves, moisture diffusion was modelled using Fick’s second law for mass transfer. The resulting partial differential equation was solved using a forward-time central-space finite difference approximation, with the assumption of variable effective diffusivity. In order to test the model, experimental data was collected for the drying of green peas in a fluidised bed at three drying temperatures. Through fitting three equation types for effective diffusivity to the data, it was found that a linear equation form, in which diffusivity increased with decreasing moisture content, was most appropriate. The final model accurately described the drying curves of the three experimental temperatures, with an R2 value greater than 98.6% for all temperatures.
Resumo:
An Australian green power (AGP) company produces energy from burning biomass from the sugar industry and recycled wood waste, however alkali in biomass is released into a recirculating stream that forms a scale as it becomes more concentrated. This investigation has shown that the addition of Bayer liquor (alumina waste residue) successfully removes scale-forming species from the recirculating stream and thus has the potential to reduce the rate of scaling. Characterisation of the scale and Bayer precipitates has been performed using X-ray diffraction (XRD), infrared spectroscopy (IR) and inductively coupled plasma optical emission spectroscopy (ICP-OES).
Resumo:
Currently, open circuit Bayer refineries pump seawater directly into their operations to neutralise the caustic fraction of the Bayer residue. The resulting supernatant has a reduced pH and is pumped back to the marine environment. This investigation has assessed modified seawater sources generated from different ion filtration processes to compare their relative capacities to neutralise bauxite residues. An assessment of the chemical stability of the neutralisation products, neutralisation efficiency, discharge water quality, bauxite residue composition, and associated economic benefits have been considered to determine the most preferable seawater filtration process based on implementation costs, savings to operations and environmental benefits. The mechanism of neutralisation for each technology was determined to be predominately due to the formation of Bayer hydrotalcite and calcium carbonate, however variations in neutralisation capacity and efficiencies have been observed. The neutralisation efficiency of each feed source has been found to be dependent on the concentration of magnesium, aluminium, calcium and carbonate. These studies have revealed that multiple neutralisation steps occur throughout the process. Environmental, economic and social advantages and disadvantages of the different filtration technologies have been explored to determine the most sustainable method for the neutralisation of bauxite residues. The relative degree of “green” associated with nanofiltered seawater and reverse osmosis filtered seawater are discussed.
Resumo:
This paper presents the results of a full-scale research project undertaken to assess scour losses/gains for modular tray green roof specimens placed on a mock-up building, and identify important factors to consider for wind design criteria. Visual assessment of the experimental results showed that usage of vegetation, parapet height, wind direction, and test duration were the predominant factors affecting scour resistance of the growth media in tested specimens. Statistical analysis results indicated that the differences in soil losses measured among Phase 2’s test trials were more significant than those in Phase 1. This was attributed to the lack of parapet, cornering wind conditions, and longer test duration found in Phase 2. Findings presented in this paper constitute a benchmark for future research to improve the knowledge gap that exists in green roof wind design.
Resumo:
Tunable synthesis of bimetallic AuxAg1-x alloyed nanoparticles and in situ monitoring of their plasmonic responses is presented. This is a new conceptual approach based on green and energy efficient, reactive, and highly-non-equilibrium microplasma chemistry.
Resumo:
A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.
Resumo:
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.
Resumo:
Room-temperature, atmospheric-pressure plasma needle treatment is used to effectively minimize the adenovirus (AdV) infectivity as quantified by the dramatic reduction of its gene expression in HEK 293A primary human embryonic kidney cells studied by green fluorescent protein imaging. The AdV titer is reduced by two orders of magnitude within only 8 min of the plasma exposure. This effect is due to longer lifetimes and higher interaction efficacy of the plasma-generated reactive species in confined space exposed to the plasma rather than thermal effects commonly utilized in pathogen inactivation. This generic approach is promising for the next-generation anti-viral treatments and imunotherapies.
Resumo:
Research on Green Information Technology (IT) is becoming a prevalent research theme in Green Information Systems (IS) research. This article provides a review of 98 papers published on Green IT between 2007−2013 to facilitate future research and to provide a retrospective analysis of existing knowledge and gaps thereof. While some researchers have discussed phenomena such as Green IT, motivation of Green IT and the Green IT adoption lifecycle, others have researched the importance of Green IT implementation within the organisational and individual level. Throughout the literature, scholars are trying to portray a constructive relationship between IT and the environment. Through our analysis, we can provide an assessment of the status of information systems literature on Green IT and, we provide taxonomy of segments of Green IT publications. Future research opportunities are identified based on the review.
Resumo:
Effective control of room-temperature electroluminescence of n-ZnMgO/p-GaN light-emitting diodes (LEDs) over both emission intensity and wavelength is demonstrated. With varied Mg concentration, the intensity of LEDs in the near-ultraviolet region is increased due to the effective radiative recombination in the ZnMgO layer. Furthermore, the emission wavelength is shifted to the green/yellow spectral region by employing an indium-tin-oxide thin film as the dopant source, where thermally activated indium diffusion creates extra deep defect levels for carrier recombination. These results clearly demonstrate the effectiveness of controlled metal incorporation in achieving high energy efficiency and spectral tunability of the n-ZnMgO/p-GaN LED devices.
Resumo:
Colloidal semiconductor nanocrystals (CS-NCs) possess compelling benefits of low-cost, large-scale solution processing, and tunable optoelectronic properties through controlled synthesis and surface chemistry engineering. These merits make them promising candidates for a variety of applications. This review focuses on the general strategies and recent developments of the controlled synthesis of CS-NCs in terms of crystalline structure, particle size, dominant exposed facet, and their surface passivation. Highlighted are the organic-media based synthesis of metal chalcogenide (including cadmium, lead, and copper chalcogenide) and metal oxide (including titanium oxide and zinc oxide) nanocrystals. Current challenges and thus future opportunities are also pointed out in this review.
Resumo:
Singapore is located at the equator, with abundant supply of solar radiation, relatively high ambient temperature and relative humidity throughout the year. The meteorological conditions of Singapore are favourable for efficient operation of solar energy based systems. Solar assisted heat pump systems are built on the roof-top of National University of Singapore’s Faculty of Engineering. The objectives of this study include the design and performance evaluation of a solar assisted heat-pump system for water desalination, water heating and drying of clothes. Using MATLAB programming language, a 2-dimensional simulation model has been developed to conduct parametric studies on the system. The system shows good prospect to be implemented in both industrial and residential applications and would give new opportunities in replacing conventional energy sources with green renewable energy.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.