280 resultados para Epithelial Sodium Channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have synthesized two novel diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) copolymers poly{3,6-dithiophene-2-yl-2,5-di(2-octyl)- pyrrolo[3,4-c]pyrrole-1,4-dione-alt-1,5-bis(dodecyloxy)naphthalene} (PDPPT-NAP) and poly{3,6-dithiophene-2-yl-2,5-di(2-butyldecyl)-pyrrolo[3,4-c]pyrrole-1,4- dione-alt-2-dodecyl-2H-benzo[d][1,2,3]triazole} (PDPPT-BTRZ) via direct arylation organometallic coupling. Both copolymers contain a common electron withdrawing DPP building block which is combined with electron donating alkoxy naphthalene and electron withdrawing alkyl-triazole comonomers. The number average molecular weight (Mn) determined by gel permeation chromatography (GPC) for polymer PDPPT-NAP is around 23 400 g mol-1 whereas for polymer PDPPT-BTRZ it is 18 600 g mol-1. The solid state absorption spectra of these copolymers show a wide range of absorption from 400 nm to 1000 nm with optical band gaps calculated from absorption cut off values in the range of 1.45-1.30 eV. The HOMO values determined for PDPPT-NAP and PDPPT-BTRZ copolymers from photoelectron spectroscopy in air (PESA) data are 5.15 eV and 5.25 eV respectively. These polymers exhibit promising p-channel and ambipolar behaviour when used as an active layer in organic thin-film transistor (OTFT) devices. The highest hole mobility measured for polymer PDPPT-NAP is around 0.0046 cm2 V-1 s-1 whereas the best ambipolar performance was calculated for PDPPT-BTRZ with a hole and electron mobility of 0.01 cm2 V-1 s-1 and 0.006 cm2 V-1 s-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secure protocols for password-based user authentication are well-studied in the cryptographic literature but have failed to see wide-spread adoption on the Internet; most proposals to date require extensive modifications to the Transport Layer Security (TLS) protocol, making deployment challenging. Recently, a few modular designs have been proposed in which a cryptographically secure password-based mutual authentication protocol is run inside a confidential (but not necessarily authenticated) channel such as TLS; the password protocol is bound to the established channel to prevent active attacks. Such protocols are useful in practice for a variety of reasons: security no longer relies on users' ability to validate server certificates and can potentially be implemented with no modifications to the secure channel protocol library. We provide a systematic study of such authentication protocols. Building on recent advances in modelling TLS, we give a formal definition of the intended security goal, which we call password-authenticated and confidential channel establishment (PACCE). We show generically that combining a secure channel protocol, such as TLS, with a password authentication protocol, where the two protocols are bound together using either the transcript of the secure channel's handshake or the server's certificate, results in a secure PACCE protocol. Our prototype based on TLS is available as a cross-platform client-side Firefox browser extension and a server-side web application which can easily be installed on deployed web browsers and servers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel beam (LSB) subject to web crippling under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. The LSB sections with two rectangular hollow flanges are made using a simultaneous cold-forming and electric resistance welding process. Due to the geometry of the LSB, and its unique residual stress characteristics and initial geometric imperfections, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending, predominant shear and combined actions. To date, however, no investigation has been conducted on the web crippling behaviour and strength of LSB sections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs. Twenty-eight web crippling tests were conducted under ETF and ITF load cases, and the ultimate web crippling capacities were compared with the predictions from the design equations in AS/NZS 4600 and AISI S100. This comparison showed that AS/NZS 4600 and AISI S100 web crippling design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs based on experimental results. Suitable design rules were also developed under the direct strength method (DSM) format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed high strength steel members are increasingly used as primary load bearing components in low rise buildings. Lipped channel beam (LCB) is one of the most commonly used flexural members in these applications. In this research an experimental study was undertaken to investigate the shear behaviour and strengths of LCB sections. Simply supported test specimens of back to back LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. The ultimate shear capacity results obtained from the tests were compared with the predictions from the current design rules in Australian/NewZealand and American cold-formed steel design standards. This comparison showed that these shear design rules are very conservative as they did not include the post-buckling strength observed in the shear tests and the higher shear buckling coefficient due to the additional fixity along the web-flange juncture. Improved shear design equations are proposed in this paper by including the above beneficial effects. Suitable lower bound design rules were also developed under the direct strength method format. This paper presents the details of this experimental study and the results including the improved design rules for the shear capacity of LCBs. It also includes the details of tests of LCBs subject to combined shear and flange distortion, and combined bending and shear actions, and proposes suitable design rules to predict the capacities in these cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear capacities are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of LCBs. Hence detailed experimental studies were undertaken to investigate the behaviour and strength of LCBs with stiffened web openings subject to shear, and combined bending and shear actions. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Numerical studies were also undertaken to investigate the strength of LCBs with stiffened web openings. Finite element models of LCBs with stiffened web openings under shear, combined bending and shear actions were developed to simulate the behaviour of tested LCBs. The developed models were then validated by comparing their results with experimental results and used in further studies. Both experimental and finite element analysis results showed that the stiffening arrangements recommended by past research and available design guidelines are not adequate to restore the original shear strengths of LCBs. Therefore new stiffener arrangements were proposed based on screw fastened plate stiffeners. This paper presents the details of this research study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To examine evidence-based strategies that motivate appropriate action and increase informed decision-making during the response and recovery phases of disasters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive “mesenchymal” cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein are reported the synthesis of a conjugate of chitosan with L-leucine, the preparation of nanoparticles from both chitosan and the conjugate for use in pulmonary drug delivery, and the in vitro evaluation of toxicity and inflammatory effects of both the polymers and their nanoparticles on the bronchial epithelial cell line, BEAS-2B. The nanoparticles, successfully prepared both from chitosan and the conjugate, had a diameter in the range of 10−30 nm. The polymers and their nanoparticles were tested for their effects on cell viability by MTT assay, on trans-epithelial permeability by using sodium fluorescein as a fluid phase marker, and on IL-8 secretion by ELISA. The conjugate nanoparticles had a low overall toxicity (IC50 = 2 mg/mL following 48 h exposure; no induction of IL-8 release at 0.5 mg/mL concentration), suggesting that they may be safe for pulmonary drug delivery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial to mesenchymal transition (EMT) has gained widespread acceptance over recent years as a mechanism by which normally sessile epithelial tumour cells can move away from the primary tumour and metastasize. This review article examines the role of a number of growth factors in inducing EMT, and the reverse process mesenchymal to epithelial transition. Unique and common intracellular signalling pathways are highlighted. A comprehensive understanding of the regulation of EMT will be critical in manipulating this process to develop novel anti-metastasis therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: Chronic lung disease characterized by loss of lung tissue,inflammation, and fibrosis represents a major global health burden. Cellular therapies that could restore pneumocytes and reduce inflammation and fibrosis would be a major advance in management. Objectives: To determine whether human amnion epithelial cells (hAECs), isolated from term placenta and having stem cell–like and antiinflammatory properties, could adopt an alveolar epithelial phenotype and repair a murine model of bleomycin-induced lung injury. Methods: Primary hAECs were cultured in small airway growth medium to determine whether the cells could adopt an alveolar epithelial phenotype. Undifferentiated primary hAECs were also injected parenterally into SCID mice after bleomycin-induced lung injury and analyzed for production of surfactant protein (SP)-A, SP-B, SP-C, and SP-D. Mouse lungs were also analyzed for inflammation and collagen deposition. Measurements and Main Results: hAECs grown in small airway growth medium developed an alveolar epithelial phenotype with lamellar body formation, production of SPs A–D, and SP-D secretion. Although hAECs injected into mice lacked SPs, hAECs recovered from mouse lungs 2 weeks posttransplantation produced SPs. hAECs remained engrafted over the 4-week test period. hAEC administration reduced inflammation in association with decreased monocyte chemoattractant protein-1, tumor necrosis factor-a, IL-1 and -6, and profibrotic transforming growth factor-b in mouse lungs. In addition,lung collagen content was significantly reduced by hAEC treatment as a possible consequence of increased degradation by matrix metalloproteinase-2 and down-regulation of the tissue inhibitors f matrix metalloproteinase-1 and 2. Conclusions: hAECs offer promise as a cellular therapy for alveolar restitution and to reduce lung inflammation and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic liver injury and inflammation lead to hepatic fibrosis, cirrhosis, and liver failure. Embryonic and mesenchymal stem cells have been shown to reduce experimental liver fibrosis but have potential limitations, including the formation of dysplastic precursors, tumors, and profibrogenic cells. Other stem-like cells may reduce hepatic inflammation and fibrosis without tumor and profibrogenic cell formation. To test this hypothesis we transplanted human amnion epithelial cells (hAEC), isolated from term delivered placenta, into immunocompetent C57/BL6 mice at week 2 of a 4-week regimen of carbon tetrachloride (CCl4) exposure to induce liver fibrosis. Two weeks following hAEC infusion, intact cells expressing the human-specific markers inner mitochondrial membrane protein and human leukocyte antigen-G were found in mouse liver without evidence of host rejection of the transplanted cells. Human albumin, known to be produced by hAEC, was detected in sera of hAEC-treated mice. Human DNA was detected in mouse liver and also spleen, lungs, and heart of some animals. Following hAEC transplantation, CCl4-treated animals showed decreased serum ALT levels and reduced hepatocyte apoptosis, compared to controls. hAEC-treated mouse liver had lower TNF-α and IL-6 protein levels and higher IL-10 compared to animals given CCl4 alone. Compared to CCl4 controls, hAEC-treated mice showed fewer activated collagen-producing hepatic stellate cells and less fibrosis area and collagen content. Reduced hepatic TGF-β levels in conjunction with a twofold increase in the active form of the collagen-degrading enzyme matrix metalloproteinase-2 in hAEC-treated mice compared to CCl4 controls may account for the reduction in fibrosis. hAEC transplantation into immunocompetent mice leads to cell engraftment, reduced hepatocyte apoptosis, and decreased hepatic inflammation and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why are consumers different: Heterogeneity in the way consumers categorise products and services – Snack Food Influenced by the individual needs, personal traits, values and goals – Blood Donation Consumers base their choices on information from external sources and prior experiences stored in memory. Intrinsic – prior experience Extrinsic – advertising, blogs, etc