440 resultados para Douglas, Prentis
Resumo:
Timed-release cryptography addresses the problem of “sending messages into the future”: information is encrypted so that it can only be decrypted after a certain amount of time, either (a) with the help of a trusted third party time server, or (b) after a party performs the required number of sequential operations. We generalise the latter case to what we call effort-release public key encryption (ER-PKE), where only the party holding the private key corresponding to the public key can decrypt, and only after performing a certain amount of computation which may or may not be parallelisable. Effort-release PKE generalises both the sequential-operation-based timed-release encryption of Rivest, Shamir, and Wagner, and also the encapsulated key escrow techniques of Bellare and Goldwasser. We give a generic construction for ER-PKE based on the use of moderately hard computational problems called puzzles. Our approach extends the KEM/DEM framework for public key encryption by introducing a difficulty notion for KEMs which results in effort-release PKE. When the puzzle used in our generic construction is non-parallelisable, we recover timed-release cryptography, with the addition that only the designated receiver (in the public key setting) can decrypt.
Resumo:
Key establishment is a crucial primitive for building secure channels in a multi-party setting. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel. Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, although existing security proofs of QKD typically assume idealized authentication. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol. We describe a security model for quantum key distribution extending classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.
Resumo:
Background: Kallikrein 15 (KLK15)/Prostinogen is a plausible candidate for prostate cancer susceptibility. Elevated KLK15 expression has been reported in prostate cancer and it has been described as an unfavorable prognostic marker for the disease. Objectives: We performed a comprehensive analysis of association of variants in the KLK15 gene with prostate cancer risk and aggressiveness by genotyping tagSNPs, as well as putative functional SNPs identified by extensive bioinformatics analysis. Methods and Data Sources: Twelve out of 22 SNPs, selected on the basis of linkage disequilibrium pattern, were analyzed in an Australian sample of 1,011 histologically verified prostate cancer cases and 1,405 ethnically matched controls. Replication was sought from two existing genome wide association studies (GWAS): the Cancer Genetic Markers of Susceptibility (CGEMS) project and a UK GWAS study. Results: Two KLK15 SNPs, rs2659053 and rs3745522, showed evidence of association (p, 0.05) but were not present on the GWAS platforms. KLK15 SNP rs2659056 was found to be associated with prostate cancer aggressiveness and showed evidence of association in a replication cohort of 5,051 patients from the UK, Australia, and the CGEMS dataset of US samples. A highly significant association with Gleason score was observed when the data was combined from these three studies with an Odds Ratio (OR) of 0.85 (95% CI = 0.77-0.93; p = 2.7610 24). The rs2659056 SNP is predicted to alter binding of the RORalpha transcription factor, which has a role in the control of cell growth and differentiation and has been suggested to control the metastatic behavior of prostate cancer cells. Conclusions: Our findings suggest a role for KLK15 genetic variation in the etiology of prostate cancer among men of European ancestry, although further studies in very large sample sets are necessary to confirm effect sizes.
Resumo:
Abstract Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10−22). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10−34). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.
Genome-wide association study identifies a common variant associated with risk of endometrial cancer
Resumo:
Overweight and obesity are strongly associated with endometrial cancer. Several independent genome-wide association studies recently identified two common polymorphisms, FTO rs9939609 and MC4R rs17782313, that are linked to increased body weight and obesity. We examined the association of FTO rs9939609 and MC4R rs17782313 with endometrial cancer risk in a pooled analysis of nine case-control studies within the Epidemiology of Endometrial Cancer Consortium (E2C2). This analysis included 3601 non-Hispanic white women with histologically-confirmed endometrial carcinoma and 5275 frequency-matched controls. Unconditional logistic regression models were used to assess the relation of FTO rs9939609 and MC4R rs17782313 genotypes to the risk of endometrial cancer. Among control women, both the FTO rs9939609 A and MC4R rs17782313 C alleles were associated with a 16% increased risk of being overweight (p = 0.001 and p = 0.004, respectively). In case-control analyses, carriers of the FTO rs9939609 AA genotype were at increased risk of endometrial carcinoma compared to women with the TT genotype [odds ratio (OR) = 1.17; 95% confidence interval (CI): 1.03–1.32, p = 0.01]. However, this association was no longer apparent after adjusting for body mass index (BMI), suggesting mediation of the gene-disease effect through body weight. The MC4R rs17782313 polymorphism was not related to endometrial cancer risk (per allele OR = 0.98; 95% CI: 0.91–1.06; p = 0.68). FTO rs9939609 is a susceptibility marker for white non-Hispanic women at higher risk of endometrial cancer. Although FTO rs9939609 alone might have limited clinical or public health significance for identifying women at high risk for endometrial cancer beyond that of excess body weight, further investigation of obesity-related genetic markers might help to identify the pathways that influence endometrial carcinogenesis.
Resumo:
Australia's airline industry was born on connecting regional communities to major cities, but almost a century later, many regional and remote communities are facing the prospect of losing their air transport services. The focus of this paper is to highlight key issues and concerns surrounding remote, rural and regional airports in Australia using a network governance framework. Contributions are focused towards regional and remote airport managers, decision makers, and policy makers to stimulate further discussion towards retaining regional and remote services to communities.
Resumo:
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.
Resumo:
Overview -Speeding and crash involvement in Australia -Speeding recidivist research in Queensland -Implications for future speed management