300 resultados para Computers.
Resumo:
Using Monte Carlo simulation for radiotherapy dose calculation can provide more accurate results when compared to the analytical methods usually found in modern treatment planning systems, especially in regions with a high degree of inhomogeneity. These more accurate results acquired using Monte Carlo simulation however, often require orders of magnitude more calculation time so as to attain high precision, thereby reducing its utility within the clinical environment. This work aims to improve the utility of Monte Carlo simulation within the clinical environment by developing techniques which enable faster Monte Carlo simulation of radiotherapy geometries. This is achieved principally through the use new high performance computing environments and simpler alternative, yet equivalent representations of complex geometries. Firstly the use of cloud computing technology and it application to radiotherapy dose calculation is demonstrated. As with other super-computer like environments, the time to complete a simulation decreases as 1=n with increasing n cloud based computers performing the calculation in parallel. Unlike traditional super computer infrastructure however, there is no initial outlay of cost, only modest ongoing usage fees; the simulations described in the following are performed using this cloud computing technology. The definition of geometry within the chosen Monte Carlo simulation environment - Geometry & Tracking 4 (GEANT4) in this case - is also addressed in this work. At the simulation implementation level, a new computer aided design interface is presented for use with GEANT4 enabling direct coupling between manufactured parts and their equivalent in the simulation environment, which is of particular importance when defining linear accelerator treatment head geometry. Further, a new technique for navigating tessellated or meshed geometries is described, allowing for up to 3 orders of magnitude performance improvement with the use of tetrahedral meshes in place of complex triangular surface meshes. The technique has application in the definition of both mechanical parts in a geometry as well as patient geometry. Static patient CT datasets like those found in typical radiotherapy treatment plans are often very large and present a significant performance penalty on a Monte Carlo simulation. By extracting the regions of interest in a radiotherapy treatment plan, and representing them in a mesh based form similar to those used in computer aided design, the above mentioned optimisation techniques can be used so as to reduce the time required to navigation the patient geometry in the simulation environment. Results presented in this work show that these equivalent yet much simplified patient geometry representations enable significant performance improvements over simulations that consider raw CT datasets alone. Furthermore, this mesh based representation allows for direct manipulation of the geometry enabling motion augmentation for time dependant dose calculation for example. Finally, an experimental dosimetry technique is described which allows the validation of time dependant Monte Carlo simulation, like the ones made possible by the afore mentioned patient geometry definition. A bespoke organic plastic scintillator dose rate meter is embedded in a gel dosimeter thereby enabling simultaneous 3D dose distribution and dose rate measurement. This work demonstrates the effectiveness of applying alternative and equivalent geometry definitions to complex geometries for the purposes of Monte Carlo simulation performance improvement. Additionally, these alternative geometry definitions allow for manipulations to be performed on otherwise static and rigid geometry.
Resumo:
Media and Information Literacy is the focus of several teaching and research projects at Queensland University of Technology and there is particular emphasis placed on digital technologies and how they are used for communication, information use and learning in formal contexts such as schools. Research projects are currently taking place in several locations where investigators are collecting data on approaches to the use of digital media tools like cameras and editing systems, tablet computers and video games. This complements QUT’s teacher preparation courses, including preparation to implement UNESCO’s Online Course in Media and Information Literacy and Intercultural Dialogue in 2013. This work takes place in the context of projects occurring at the National level in Australia that continue to promote Media and Information Literacy.
Resumo:
Although advances in technology now enable people to communicate 'anytime, anyplace', it is not clear how citizens can be motivated to actually do so. This paper evaluates the impact of three principles of psychological empowerment, namely perceived self-efficacy, sense of community and causal importance, on public transport passengers' motivation to report issues and complaints while on the move. A week-long study with 65 participants revealed that self-efficacy and causal importance increased participation in short bursts and increased perceptions of service quality over longer periods. Finally, we discuss the implications of these findings for citizen participation projects and reflect on design opportunities for mobile technologies that motivate citizen participation.
Resumo:
In an attempt to deal with the potential problems presented by existing information systems, a shift towards the implementation of ERP packages has been witnessed. The common view, particularly the one espoused by vendors, is that ERP packages are most successfully implemented when the standard model is adopted. Yet, despite this, customisation activity still occurs reportedly due to misalignment between the functionality of the package and the requirements of those in the implementing organisation. However, it is recognised that systems development and organisational decision-making are activities influenced by the perspectives of the various groups and individuals involved in the process. Thus, as customisation can be seen as part of systems development, and has to be decided upon, it should be thought about in the same way. In this study, two ERP projects are used to examine different reasons why customisation might take place. These reasons are then built upon through reference to the ERP and more general packaged software literature. The study suggests that whilst a common reason for customising ERP packages might be concerned with functionality misfits, it is important to look further into why these may occur, as there are clearly other reasons for customisation stemming from the multiplicity of social groups involved in the process.
Resumo:
Molecular-level computer simulations of restricted water diffusion can be used to develop models for relating diffusion tensor imaging measurements of anisotropic tissue to microstructural tissue characteristics. The diffusion tensors resulting from these simulations can then be analyzed in terms of their relationship to the structural anisotropy of the model used. As the translational motion of water molecules is essentially random, their dynamics can be effectively simulated using computers. In addition to modeling water dynamics and water-tissue interactions, the simulation software of the present study was developed to automatically generate collagen fiber networks from user-defined parameters. This flexibility provides the opportunity for further investigations of the relationship between the diffusion tensor of water and morphologically different models representing different anisotropic tissues.
Resumo:
The emergence of pseudo-marginal algorithms has led to improved computational efficiency for dealing with complex Bayesian models with latent variables. Here an unbiased estimator of the likelihood replaces the true likelihood in order to produce a Bayesian algorithm that remains on the marginal space of the model parameter (with latent variables integrated out), with a target distribution that is still the correct posterior distribution. Very efficient proposal distributions can be developed on the marginal space relative to the joint space of model parameter and latent variables. Thus psuedo-marginal algorithms tend to have substantially better mixing properties. However, for pseudo-marginal approaches to perform well, the likelihood has to be estimated rather precisely. This can be difficult to achieve in complex applications. In this paper we propose to take advantage of multiple central processing units (CPUs), that are readily available on most standard desktop computers. Here the likelihood is estimated independently on the multiple CPUs, with the ultimate estimate of the likelihood being the average of the estimates obtained from the multiple CPUs. The estimate remains unbiased, but the variability is reduced. We compare and contrast two different technologies that allow the implementation of this idea, both of which require a negligible amount of extra programming effort. The superior performance of this idea over the standard approach is demonstrated on simulated data from a stochastic volatility model.
Resumo:
"The music industry is going through a period of immense change brought about in part by the digital revolution. What is the role of music in the age of computers and the internet? How has the music industry been transformed by the economic and technological upheavals of recent years, and how is it likely to change in the future? This is the first major study of the music industry in the new millennium. Wikström provides an international overview of the music industry and its future prospects in the world of global entertainment. He illuminates the workings of the music industry, and captures the dynamics at work in the production of musical culture between the transnational media conglomerates, the independent music companies and the public." -- back cover Table of Contents Introduction: Music in the Cloud Chapter 1: A Copyright Industry. Chapter 2: Inside the Music Industry Chapter 3: Music and the Media Chapter 4: Making Music - An Industrial or Creative Process Chapter 5: The Social and Creative Music Fan Chapter 6: Future Sounds
Resumo:
Constructing train schedules is vital in railways. This complex and time consuming task is however made more difficult by additional requirements to make train schedules robust to delays and other disruptions. For a timetable to be regarded as robust, it should be insensitive to delays of a specified level and its performance with respect to a given metric, should be within given tolerances. In other words the effect of delays should be identifiable and should be shown to be minimal. To this end, a sensitivity analysis is proposed that identifies affected operations. More specifically a sensitivity analysis for determining what operation delays cause each operation to be affected is proposed. The information provided by this analysis gives another measure of timetable robustness and also provides control information that can be used when delays occur in practice. Several algorithms are proposed to identify this information and they utilise a disjunctive graph model of train operations. Upon completion the sets of affected operations can also be used to define the impact of all delays without further disjunctive graph evaluations.
Resumo:
Purpose: Flat-detector, cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. Methods: The rich sources of prior information in IGRT are incorporated into a hidden Markov random field (MRF) model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk (OAR). The voxel labels are estimated using the iterated conditional modes (ICM) algorithm. Results: The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom (CIRS, Inc. model 062). The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. Conclusions: By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
There is a song at the beginning of the musical, West Side Story, where the character Tony sings that “something’s coming, something good.” The song is an anthem of optimism, brimming with promise. This paper is about the long-held promise of information and communication technology (ICT) to transform teaching and learning, to modernise the learning environment of the classroom, and to create a new digital pedagogy. But much of our experience to date in the schooling sector tells more of resistance and reaction than revolution, of more of the same but with a computer in the corner and of ICT activities as unwelcome time-fillers/time-wasters. Recently, a group of pre-service teachers in a postgraduate primary education degree in an Australian university were introduced to learning objects in an ICT immersion program. Their analyses and related responses, as recorded in online journals, have here been interpreted in terms of TPACK (Technological Pedagogical and Content Knowledge). Against contemporary observation, these students generally displayed high levels of competence and highly positive dispositions of students to the integration of ICT in their future classrooms. In short, they displayed the same optimism and confidence as the fictional “Tony” in believing that something good was coming.
Resumo:
The representation of business process models has been a continuing research topic for many years now. However, many process model representations have not developed beyond minimally interactive 2D icon-based representations of directed graphs and networks, with little or no annotation for information overlays. In addition, very few of these representations have undergone a thorough analysis or design process with reference to psychological theories on data and process visualization. This dearth of visualization research, we believe, has led to problems with BPM uptake in some organizations, as the representations can be difficult for stakeholders to understand, and thus remains an open research question for the BPM community. In addition, business analysts and process modeling experts themselves need visual representations that are able to assist with key BPM life cycle tasks in the process of generating optimal solutions. With the rise of desktop computers and commodity mobile devices capable of supporting rich interactive 3D environments, we believe that much of the research performed in computer human interaction, virtual reality, games and interactive entertainment have much potential in areas of BPM; to engage, provide insight, and to promote collaboration amongst analysts and stakeholders alike. We believe this is a timely topic, with research emerging in a number of places around the globe, relevant to this workshop. This is the second TAProViz workshop being run at BPM. The intention this year is to consolidate on the results of last year's successful workshop by further developing this important topic, identifying the key research topics of interest to the BPM visualization community.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
The implementation of systematic peer review as a professional development activity, and as a support for educational design activities is under-utilised in many Australian higher education institutions. This case study reports on the first stages of planning and implementation of an institution-wide project to enhance teaching and learning quality at a remote and regional university, where one of the major strategies for improvement is peer review. Through a systematic process of staff engagement in peer review, within and from outside the organisation, a substantial change in flexible learning is envisaged. A mix of new and different learning spaces are to be used in the project, including blended learning spaces for academic development. This paper describes the research framework that will guide the peer review process and examines the early findings of the design-based research. Leadership, awareness raising and development of a supportive community of inquiry are seen as key components for successful implementation of peer review. In addition, unique contextual elements add to the complexity of designing for transformative change within such a relatively new organization.
Resumo:
This study uses the well-known social networking site, Facebook (FB), for a study of differences in perceptions on the use of technologies in the classroom around the world. This study is part of a larger project exploring telecollaboration and the use of online discussions between graduate students in an online masters program based in Australia and students in the graduate education program at a regional university in Greece. Postings reveal more similarities between the situations and perceptions of the participants from the different countries than differences. Most participants indicated that while they and their students had access in general to computers and the internet, they did not necessarily have this access in the classroom. Even when technologies were available in schools, participants identified a critical need for professional development to increase teachers’ use of ICT. These findings are relevant to educators and policy development in terms of implementation of ICT or social networking in the language classroom.
Resumo:
This chapter explores the roles and functions of both digital creative workers and creative services firms in an industry beyond the core creative industries: banking. The chapter focuses on the design and development of apps and mobile websites for smartphones and tablet computers, with examples drawn principally from the Australian banking sector. While it might be assumed that utility and practicality are more critical and more highly valued in apps development for financial services institutions than innovation and aesthetic design, this chapter illustrates the growing importance placed on creative work in this sector.