222 resultados para Commercial layer
Resumo:
The adsorption of In on the Si(111)−Ge(5×5) surface reconstruction has been studied with scanning tunneling microscopy and ab initio calculations to investigate the possibility of using this reconstruction as a template for cluster formation. As with In adsorption on Si(111)−7×7 at low substrate temperatures and low In fluences, the In adatoms are found to preferentially adsorb on the faulted half-unit cell. However, in contrast to In adsorption on Si(111)−7×7, the In adatoms are also frequently found in the unfaulted half-unit cell at low coverages. The filling of unfaulted unit cell halves is primarily due to the formation of large clusters that span multiple substrate half-unit cells. Moreover, many of the faulted half-unit cells have a streaked appearance that indicates that surface atoms within them are mobile.
Resumo:
The news increasingly provides help, advice, guidance, and information about the management of self and everyday life, in addition to its traditional role in political communication. Yet such forms of journalism are still regularly denigrated in scholarly discussions, as they often deviate from normative ideals. This is particularly true in lifestyle journalism, where few studies have examined the impact of commercial influences. Through in-depth interviews with 89 Australian and German lifestyle journalists, this paper explores the ways in which journalists experience how the lifestyle industries try to shape their daily work, and how these journalists deal with these influences. We find that lifestyle journalists are in a constant struggle over the control of editorial content, and their responses to increasing commercial pressures vary between resistance and resignation. This has implications for our understanding of journalism as a whole in that it broadens it beyond traditional conceptualizations associated with political journalism.
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
This study investigated the cool roof technology effects on annual energy saving of a large one-storey commercial building in Queensland, Australia. A computer model of the case study was developed using commercial software by using the appropriate geometrical and thermal building specifications. Field study data were used to validate the model. The model was then used to extend the investigation to other cities in various Australian climate zones. The results of this research show that significant energy savings can be obtained using cool roof technology, particularly in warm, sunny climates, and the thesis can contribute to provide a guideline for application of cool roof technology to single-storey commercial building throughout Australia.
Resumo:
Content delivery networks (CDNs) are an essential component of modern website infrastructures: edge servers located closer to users cache content, increasing robustness and capacity while decreasing latency. However, this situation becomes complicated for HTTPS content that is to be delivered using the Transport Layer Security (TLS) protocol: the edge server must be able to carry out TLS handshakes for the cached domain. Most commercial CDNs require that the domain owner give their certificate's private key to the CDN's edge server or abandon caching of HTTPS content entirely. We examine the security and performance of a recently commercialized delegation technique in which the domain owner retains possession of their private key and splits the TLS state machine geographically with the edge server using a private key proxy service. This allows the domain owner to limit the amount of trust given to the edge server while maintaining the benefits of CDN caching. On the performance front, we find that latency is slightly worse compared to the insecure approach, but still significantly better than the domain owner serving the content directly. On the security front, we enumerate the security goals for TLS handshake proxying and identify a subtle difference between the security of RSA key transport and signed-Diffie--Hellman in TLS handshake proxying; we also discuss timing side channel resistance of the key server and the effect of TLS session resumption.
Resumo:
Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.
Resumo:
Light gauge steel frame (LSF) wall systems are increasingly used in residential and commercial buildings as load bearing and non-load bearing elements. Conventionally, the fire resistance ratings of such building elements are determined using approximate prescriptive methods based on limited standard fire tests. However, recent studies have shown that in some instances real building fire time-temperature curves could be more severe than the standard fire curve, in terms of maximum temperature and rate of temperature rise. This has caused problems for safe evacuation and rescue activities, and in some instances has also lead to the collapse of buildings earlier than the prescribed fire resistance. Therefore a detailed research study into the performance of LSF wall systems under both standard fire and realistic fire conditions was undertaken using full scale fire tests to understand the fire performance of different LSF wall configurations. Both load bearing and non-load bearing full scale fire tests were performed on LSF walls configurations which included single layer, double layer, externally insulated wall panels made up of different steel sections and thicknesses of gypsum plasterboards. The non-load bearing fire test results were utilized to understand the factors affecting the fire resistance of LSF walls, while loading bearing fire test results led to development of simplified methods to predict the fire resistance ratings of load bearing LSF walls exposed to both standard and realistic design fires. This paper presents the results of full scale experimental study and highlights the effects of standard and realistic fire conditions on fire performance of LSF walls.
Resumo:
By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.
Resumo:
The carrier blocking property of polyterpenol thin films derived from non-synthetic precursor is studied using Electric Field Induced Optical Second Harmonic Generation (EFISHG) technique that can directly probe carrier motion in organic materials. A properly biased double-layer MIM device with a structure of indium zinc oxide (IZO)/polyterpenol/C₆₀/Al shows that by incorporating the polyterpenol thin film, the electron transport can be blocked while the hole transport is allowed. The inherent electron blocking hole transport property is verified using Al/C₆₀/Alq3/polyterpenol/IZO and Al/Alq3/polyterpenol/IZO structures. The rectifying property of polyterpenol is very promising and can be utilized in the fabrication of many organic devices.
Resumo:
Time-resolved electric field induced second harmonic generation technique was used to probe the carrier transients within double-layer pentacene-based MIM devices. Polyterpenol thin films fabricated from non-synthetic environmentally sustainable source were used as a blocking layer to assist in visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Results demonstrated that carrier transients were comprised of charging on electrodes, followed by carrier injection and charging of the interface. Polyterpenol was demonstrated to be a sound blocking material and can therefore be effectively used for probing of double-layer devices using EFISHG.
Resumo:
A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
In this study, a bench scale forward osmosis (FO) process was operated using two commonly available FO membranes in different orientations in order to examine the removal of foulants in the coal seam gas (CSG) associated water, the water flux and fouling behaviours of the process were also investigated. After 48 h of fouling simulation experiment, the water flux declined by approximately 55 and 35% of its initial level in the TFC-PRO and CTA-PRO modes (support layer facing the feed), respectively, while the flux decline in the TFC-FO and CTA-FO modes (active layer facing the feed) was insignificant. The flux decline in PRO modes was caused by the compounding effects of internal concentration polarisation and membrane fouling. However, the declined flux was completely recovered to its initial level following the hydraulic cleaning using deionised water. Dissolved organic carbon (DOC), adenosine tri-phosphate (ATP) and major inorganic scalants (Ca, Mg and silica) in the CSG feed were effectively removed by using the FO process. The results of this study suggest that the FO process shows promising potential to be employed as an effective pre-treatment for membrane purification of CSG associated water.
Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics
Resumo:
We propose the use of solution-processed molybdenum disulfide (MoS2) flakes as hole transport layer (HTL) for metal-organic perovskite solar cells. MoS2 bulk crystals are exfoliated in 2-propanol and deposited on perovskite layers by spray coating. We fabricated cells with glass/FTO/compact-TiO2/mesoporous-TiO2/CH3NH3PbI3/spiro- OMeTAD/Au structure and cells with the same structure but with MoS2 flakes as HTL instead of spiro-OMeTAD, the most widely used HTL. The electrical characterization of the cells with MoS2 as HTL show promising power conversion efficiency -η- of 3.9% with respect to cells with pristine spiro-OMeTAD (η=3.1%). Endurance test on 800-hour shelf life has shown higher stability for the MoS2–based cells (ΔPCE/PCE=-17%) with respect to the doped spiro-OMeTAD-based one (ΔPCE/PCE =-45%). Further improvements are expected with the optimization of the MoS2 deposition process