735 resultados para Bayesian framework
Resumo:
This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.
Resumo:
Nature Refuges encompass the second largest extent of protected area estate in Queensland. Major problems exist in the data capture, map presentation, data quality and integrity of these boundaries. The spatial accuracies/inaccuracies of the Nature Refuge administrative boundaries directly influence the ability to preserve valuable ecosystems by challenging negative environmental impacts on these properties. This research work is about supporting the Nature Refuge Programs efforts to secure Queensland’s natural and cultural values on private land by utilising GIS and its advanced functionalities. The research design organizes and enters Queensland’s Nature Refuge boundaries into a spatial environment. Survey quality data collection techniques such as the Global Positioning Systems (GPS) are investigated to capture Nature Refuge boundary information. Using the concepts of map communication GIS Cartography is utilised for the protected area plan design. New spatial datasets are generated facilitating the effectiveness of investigative data analysis. The geodatabase model developed by this study adds rich GIS behaviour providing the capability to store, query, and manipulate geographic information. It provides the ability to leverage data relationships and enforces topological integrity creating savings in customization and productivity. The final phase of the research design incorporates the advanced functions of ArcGIS. These functions facilitate building spatial system models. The geodatabase and process models developed by this research can be easily modified and the data relating to mining can be replaced by other negative environmental impacts affecting the Nature Refuges. Results of the research are presented as graphs and maps providing visual evidence supporting the usefulness of GIS as means for capturing, visualising and enhancing spatial quality and integrity of Nature Refuge boundaries.
Resumo:
Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain.
Resumo:
Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participant’s reaction times during a monotonous task. A lab-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Then relevant parameters are used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models are compared to detect in real-time – minute by minute - the lapses in vigilance during the task. We show that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables to detect vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared to Neural Networks and Generalised Linear Mixed Models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.
Resumo:
Ubiquitous access to patient medical records is an important aspect of caring for patient safety. Unavailability of sufficient medical information at the point-ofcare could possibly lead to a fatality. The U.S. Institute of Medicine has reported that between 44,000 and 98,000 people die each year due to medical errors, such as incorrect medication dosages, due to poor legibility in manual records, or delays in consolidating needed information to discern the proper intervention. In this research we propose employing emergent technologies such as Java SIM Cards (JSC), Smart Phones (SP), Next Generation Networks (NGN), Near Field Communications (NFC), Public Key Infrastructure (PKI), and Biometric Identification to develop a secure framework and related protocols for ubiquitous access to Electronic Health Records (EHR). A partial EHR contained within a JSC can be used at the point-of-care in order to help quick diagnosis of a patient’s problems. The full EHR can be accessed from an Electronic Health Records Centre (EHRC) when time and network availability permit. Moreover, this framework and related protocols enable patients to give their explicit consent to a doctor to access their personal medical data, by using their Smart Phone, when the doctor needs to see or update the patient’s medical information during an examination. Also our proposed solution would give the power to patients to modify the Access Control List (ACL) related to their EHRs and view their EHRs through their Smart Phone. Currently, very limited research has been done on using JSCs and similar technologies as a portable repository of EHRs or on the specific security issues that are likely to arise when JSCs are used with ubiquitous access to EHRs. Previous research is concerned with using Medicare cards, a kind of Smart Card, as a repository of medical information at the patient point-of-care. However, this imposes some limitations on the patient’s emergency medical care, including the inability to detect the patient’s location, to call and send information to an emergency room automatically, and to interact with the patient in order to get consent. The aim of our framework and related protocols is to overcome these limitations by taking advantage of the SIM card and the technologies mentioned above. Briefly, our framework and related protocols will offer the full benefits of accessing an up-to-date, precise, and comprehensive medical history of a patient, whilst its mobility will provide ubiquitous access to medical and patient information everywhere it is needed. The objective of our framework and related protocols is to automate interactions between patients, healthcare providers and insurance organisations, increase patient safety, improve quality of care, and reduce the costs.
Resumo:
This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.
Resumo:
Ubiquitous access to patient medical records is an important aspect of caring for patient safety. Unavailability of sufficient medical information at the patient point-of-care could possibly lead to a fatality. In this paper we propose employing emergent technologies such as Java SIM Cards (JSC),Smart Phones (SP), Next Generation Networks (NGN), Near Field Communications (NFC), Public Key Infrastructure (PKI), and Biometric Identification to develop a secure framework and related protocols for ubiquitous access to Electronic Health Records (EHRs). A partial EHR contained within a JSC can be used at the patient point-of-care in order to help quick diagnosis of a patient’s problems. The full EHR can be accessed from an Electronic Healthcare Records Centre (EHRC).
Resumo:
INTRODUCTION: Recent events have heightened awareness of disaster health issues and the need to prepare the health workforce to plan for and respond to major incidents. This has been reinforced at an international level by the World Association for Disaster and Emergency Medicine, which has proposed an international educational framework. ----------- OBJECTIVE: The aim of this paper is to outline the development of a national educational framework for disaster health in Australia. ----------- METHODS: The framework was developed on the basis of the literature and the previous experience of members of a National Collaborative for Disaster Health Education and Research. The Collaborative was brought together in a series of workshops and teleconferences, utilizing a modified Delphi technique to finalize the content at each level of the framework and to assign a value to the inclusion of that content at the various levels. ----------- FRAMEWORK: The framework identifies seven educational levels along with educational outcomes for each level. The framework also identifies the recommended contents at each level and assigns a rating of depth for each component. The framework is not intended as a detailed curriculum, but rather as a guide for educationalists to develop specific programs at each level. ----------- CONCLUSIONS: This educational framework will provide an infrastructure around which future educational programs in Disaster Health in Australia may be designed and delivered. It will permit improved articulation for students between the various levels and greater consistency between programs so that operational responders may have a consistent language and operational approach to the management of major events.
Resumo:
This paper presents an approach to providing better safety for adolescents playing online games. We highlight an emerging paedophile presence in online games and offer a general framework for the design of monitoring and alerting tools. Our method is to monitor and detect relationships forming with a child in online games, and alert if the relationship indicates an offline meeting with the child has been arranged or has the potential to occur. A prototype implementation with demonstrative components of the framework has been created and is introduced. The prototype demonstration and evaluation uses a teen rated online relationship-building environment for its case study, specifically the predominant Massive Multiplayer Online Game (MMO) World of Warcraft.