227 resultados para Artificial intelligence|Computer science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2013, ten teams from German universities and research institutes participated in a national robot competition called SpaceBot Cup organized by the DLR Space Administration. The robots had one hour to autonomously explore and map a challenging Mars-like environment, find, transport, and manipulate two objects, and navigate back to the landing site. Localization without GPS in an unstructured environment was a major issue as was mobile manipulation and very restricted communication. This paper describes our system of two rovers operating on the ground plus a quadrotor UAV simulating an observing orbiting satellite. We relied on ROS (robot operating system) as the software infrastructure and describe the main ROS components utilized in performing the tasks. Despite (or because of) faults, communication loss and breakdowns, it was a valuable experience with many lessons learned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present our work on tele-operating a complex humanoid robot with the help of bio-signals collected from the operator. The frameworks (for robot vision, collision avoidance and machine learning), developed in our lab, allow for a safe interaction with the environment, when combined. This even works with noisy control signals, such as, the operator’s hand acceleration and their electromyography (EMG) signals. These bio-signals are used to execute equivalent actions (such as, reaching and grasping of objects) on the 7 DOF arm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discounted Cumulative Gain (DCG) is a well-known ranking evaluation measure for models built with multiple relevance graded data. By handling tagging data used in recommendation systems as an ordinal relevance set of {negative,null,positive}, we propose to build a DCG based recommendation model. We present an efficient and novel learning-to-rank method by optimizing DCG for a recommendation model using the tagging data interpretation scheme. Evaluating the proposed method on real-world datasets, we demonstrate that the method is scalable and outperforms the benchmarking methods by generating a quality top-N item recommendation list.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real-time, using corners as object tokens. Corners are detected using the Harris corner detector, and local image-plane constraints are employed to solve the correspondence problem. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. Tracking is performed without the use of any 3-dimensional motion model. The technique is novel in that, unlike traditional feature-tracking algorithms where feature detection and tracking is carried out over the entire image-plane, here it is restricted to those areas most likely to contain-meaningful image structure. Two distinct types of instantiation regions are identified, these being the “focus-of-expansion” region and “border” regions of the image-plane. The size and location of these regions are defined from a combination of odometry information and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Implementation of the algorithm using T800 Transputers has shown that near-linear speedups are achievable, and that real-time operation is possible (half-video rate has been achieved using 30 processing elements).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For future planetary robot missions, multi-robot-systems can be considered as a suitable platform to perform space mission faster and more reliable. In heterogeneous robot teams, each robot can have different abilities and sensor equipment. In this paper we describe a lunar demonstration scenario where a team of mobile robots explores an unknown area and identifies a set of objects belonging to a lunar infrastructure. Our robot team consists of two exploring scout robots and a mobile manipulator. The mission goal is to locate the objects within a certain area, to identify the objects, and to transport the objects to a base station. The robots have a different sensor setup and different capabilities. In order to classify parts of the lunar infrastructure, the robots have to share the knowledge about the objects. Based on the different sensing capabilities, several information modalities have to be shared and combined by the robots. In this work we propose an approach using spatial features and a fuzzy logic based reasoning for distributed object classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present an autonomous mobile ma- nipulator that is used to collect sample containers in an unknown environment. The manipulator is part of a team of heterogeneous mobile robots that are to search and identify sample containers in an unknown environment. A map of the environment along with possible positions of sample containers are shared between the robots in the team by using a cloud-based communication interface. To grasp a container with its manipulator arm the robot has to place itself in a position suitable for the manipulation task. This optimal base placement pose is selected by querying a precomputed inverse reachability database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programming is a subject that many beginning students find difficult. The PHP Intelligent Tutoring System (PHP ITS) has been designed with the aim of making it easier for novices to learn the PHP language in order to develop dynamic web pages. Programming requires practice. This makes it necessary to include practical exercises in any ITS that supports students learning to program. The PHP ITS works by providing exercises for students to solve and then providing feedback based on their solutions. The major challenge here is to be able to identify many semantically equivalent solutions to a single exercise. The PHP ITS achieves this by using theories of Artificial Intelligence (AI) including first-order predicate logic and classical and hierarchical planning to model the subject matter taught by the system. This paper highlights the approach taken by the PHP ITS to analyse students’ programs that include a number of program constructs that are used by beginners of web development. The PHP ITS was built using this model and evaluated in a unit at the Queensland University of Technology. The results showed that it was capable of correctly analysing over 96 % of the solutions to exercises supplied by students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This proposal describes the innovative and competitive lunar payload solution developed at the Queensland University of Technology (QUT)–the LunaRoo: a hopping robot designed to exploit the Moon's lower gravity to leap up to 20m above the surface. It is compact enough to fit within a 10cm cube, whilst providing unique observation and mission capabilities by creating imagery during the hop. This first section is deliberately kept short and concise for web submission; additional information can be found in the second chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object detection is a fundamental task in many computer vision applications, therefore the importance of evaluating the quality of object detection is well acknowledged in this domain. This process gives insight into the capabilities of methods in handling environmental changes. In this paper, a new method for object detection is introduced that combines the Selective Search and EdgeBoxes. We tested these three methods under environmental variations. Our experiments demonstrate the outperformance of the combination method under illumination and view point variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial intelligence (AI) applications typically involve encoding expert knowledge in machine form to find optimal solutions for a given problem. However, this paper deals with the opposite process of extracting new and human-comprehensible insights from emergent AI behaviour. Some examples of useful game-related insights drawn from observing AI players in action are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though crashes between trains and road users are rare events at railway level crossings, they are one of the major safety concerns for the Australian railway industry. Nearmiss events at level crossings occur more frequently, and can provide more information about factors leading to level crossing incidents. In this paper we introduce a video analytic approach for automatically detecting and localizing vehicles from cameras mounted on trains for detecting near-miss events. To detect and localize vehicles at level crossings we extract patches from an image and classify each patch for detecting vehicles. We developed a region proposals algorithm for generating patches, and we use a Convolutional Neural Network (CNN) for classifying each patch. To localize vehicles in images we combine the patches that are classified as vehicles according to their CNN scores and positions. We compared our system with the Deformable Part Models (DPM) and Regions with CNN features (R-CNN) object detectors. Experimental results on a railway dataset show that the recall rate of our proposed system is 29% higher than what can be achieved with DPM or R-CNN detectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-monotonic reasoning typically deals with three kinds of knowledge. Facts are meant to describe immutable statements of the environment. Rules define relationships among elements. Lastly, an ordering among the rules, in the form of a superiority relation, establishes the relative strength of rules. To revise a non-monotonic theory, we can change either one of these three elements. We prove that the problem of revising a non-monotonic theory by only changing the superiority relation is a NP-complete problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a puzzle game is created, its design parameters must be chosen to allow solvable and interesting challenges to be created for the player. We investigate the use of random sampling as a computationally inexpensive means of automated game analysis, to evaluate the BoxOff family of puzzle games. This analysis reveals useful insights into the game, such as the surprising fact that almost 100% of randomly generated challenges have a solution, but less than 10% will be solved using strictly random play, validating the inventor’s design choices. We show the 1D game to be trivial and the 3D game to be viable.